The Stacks project

Exercise 110.65.4 (Heights). Let $K$ be a field. Let $h_ n : \mathbf{P}^ n(K) \to \mathbf{R}$, $n \geq 0$ be a collection of functions satisfying the $2$ axioms we discussed in the lectures. Let $X$ be a projective variety over $K$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module and recall that we have constructed in the lectures an associated height function $h_\mathcal {L} : X(K) \to \mathbf{R}$. Let $\alpha : X \to X$ be an automorphism of $X$ over $K$.

  1. Prove that $P \mapsto h_\mathcal {L}(\alpha (P))$ differs from the function $h_{\alpha ^*\mathcal{L}}$ by a bounded amount. (Hint: recall that if there is a morphism $\varphi : X \to \mathbf{P}^ n$ with $\mathcal{L} = \varphi ^*\mathcal{O}_{\mathbf{P}^ n}(1)$, then by construction $h_\mathcal {L}(P) = h_ n(\varphi (P))$ and play around with that. In general write $\mathcal{L}$ as a difference of two of these.)

  2. Assume that $h_\mathcal {L}(P) - h_\mathcal {L}(\alpha (P))$ is unbounded on $X(K)$. Show that $h_\mathcal {N}$ with $\mathcal{N} = \mathcal{L} \otimes \alpha ^*\mathcal{L}^{\otimes -1}$ is unbounded on $X(K)$.

  3. Assume $X$ is an elliptic curve and that $\mathcal{L}$ is a symmetric ample invertible module on $X$ such that $h_\mathcal {L}$ is unbounded on $X(K)$. Show that there exists an invertible module $\mathcal{N}$ of degree $0$ such that $h_\mathcal {N}$ is unbounded. (Hints: Recall that $X$ is an abelian variety of dimension $1$. Thus $h_\mathcal {L}$ is quadratic up to a constant by results in the lectures. Choose a suitable point $P_0 \in X(K)$. Let $\alpha : X \to X$ be translation by $P_0$. Consider $P \mapsto h_\mathcal {L}(P) - h_\mathcal {L}(P + P_0)$. Apply the results you proved above.)

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GYC. Beware of the difference between the letter 'O' and the digit '0'.