The Stacks project

Lemma 16.3.7. Let $R \to A$ be a ring map of finite presentation. Let $a \in A$. Consider the following conditions on $a$:

  1. $A_ a$ is smooth over $R$,

  2. $A_ a$ is smooth over $R$ and $\Omega _{A_ a/R}$ is stably free,

  3. $A_ a$ is smooth over $R$ and $\Omega _{A_ a/R}$ is free,

  4. $A_ a$ is standard smooth over $R$,

  5. $a$ is strictly standard in $A$ over $R$,

  6. $a$ is elementary standard in $A$ over $R$.

Then we have

  1. (4) $\Rightarrow $ (3) $\Rightarrow $ (2) $\Rightarrow $ (1),

  2. (6) $\Rightarrow $ (5),

  3. (6) $\Rightarrow $ (4),

  4. (5) $\Rightarrow $ (2),

  5. (2) $\Rightarrow $ the elements $a^ e$, $e \geq e_0$ are strictly standard in $A$ over $R$,

  6. (4) $\Rightarrow $ the elements $a^ e$, $e \geq e_0$ are elementary standard in $A$ over $R$.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 10.137.7. Part (b) is clear from Definition 16.2.3.

Proof of (c). Choose a presentation $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ such that (16.2.3.1) and (16.2.3.2) hold. Choose $h \in R[x_1, \ldots , x_ n]$ mapping to $a$. Then

\[ A_ a = R[x_0, x_1, \ldots , x_ n]/(x_0h - 1, f_1, \ldots , f_ m). \]

Write $J = (x_0h - 1, f_1, \ldots , f_ m)$. By (16.2.3.2) we see that the $A_ a$-module $J/J^2$ is generated by $x_0h - 1, f_1, \ldots , f_ c$ over $A_ a$. Hence, as in the proof of Algebra, Lemma 10.136.6, we can choose a $g \in 1 + J$ such that

\[ A_ a = R[x_0, \ldots , x_ n, x_{n + 1}]/ (x_0h - 1, f_1, \ldots , f_ m, gx_{n + 1} - 1). \]

At this point (16.2.3.1) implies that $R \to A_ a$ is standard smooth (use the coordinates $x_0, x_1, \ldots , x_ c, x_{n + 1}$ to take derivatives).

Proof of (d). Choose a presentation $A = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ such that (16.2.3.3) and (16.2.3.4) hold. Write $I = (f_1, \ldots , f_ m)$. We already know that $A_ a$ is smooth over $R$, see Lemma 16.2.5. By Lemma 16.2.4 we see that $(I/I^2)_ a$ is free on $f_1, \ldots , f_ c$ and maps isomorphically to a direct summand of $\bigoplus A_ a \text{d}x_ i$. Since $\Omega _{A_ a/R} = (\Omega _{A/R})_ a$ is the cokernel of the map $(I/I^2)_ a \to \bigoplus A_ a \text{d}x_ i$ we conclude that it is stably free.

Proof of (e). Choose a presentation $A = R[x_1, \ldots , x_ n]/I$ with $I$ finitely generated. By assumption we have a short exact sequence

\[ 0 \to (I/I^2)_ a \to \bigoplus \nolimits _{i = 1, \ldots , n} A_ a\text{d}x_ i \to \Omega _{A_ a/R} \to 0 \]

which is split exact. Hence we see that $(I/I^2)_ a \oplus \Omega _{A_ a/R}$ is a free $A_ a$-module. Since $\Omega _{A_ a/R}$ is stably free we see that $(I/I^2)_ a$ is stably free as well. Thus replacing the presentation chosen above by $A = R[x_1, \ldots , x_ n, x_{n + 1}, \ldots , x_{n + r}]/J$ with $J = (I, x_{n + 1}, \ldots , x_{n + r})$ for some $r$ we get that $(J/J^2)_ a$ is (finite) free. Choose $f_1, \ldots , f_ c \in J$ which map to a basis of $(J/J^2)_ a$. Extend this to a list of generators $f_1, \ldots , f_ m \in J$. Consider the presentation $A = R[x_1, \ldots , x_{n + r}]/(f_1, \ldots , f_ m)$. Then (16.2.3.4) holds for $a^ e$ for all sufficiently large $e$ by construction. Moreover, since $(J/J^2)_ a \to \bigoplus \nolimits _{i = 1, \ldots , n + r} A_ a\text{d}x_ i$ is a split injection we can find an $A_ a$-linear left inverse. Writing this left inverse in terms of the basis $f_1, \ldots , f_ c$ and clearing denominators we find a linear map $\psi _0 : A^{\oplus n + r} \to A^{\oplus c}$ such that

\[ A^{\oplus c} \xrightarrow {(f_1, \ldots , f_ c)} J/J^2 \xrightarrow {f \mapsto \text{d}f} \bigoplus \nolimits _{i = 1, \ldots , n + r} A \text{d}x_ i \xrightarrow {\psi _0} A^{\oplus c} \]

is multiplication by $a^{e_0}$ for some $e_0 \geq 1$. By Lemma 16.2.4 we see (16.2.3.3) holds for all $a^{ce_0}$ and hence for $a^ e$ for all $e$ with $e \geq ce_0$.

Proof of (f). Choose a presentation $A_ a = R[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ such that $\det (\partial f_ j/\partial x_ i)_{i, j = 1, \ldots , c}$ is invertible in $A_ a$. We may assume that for some $m < n$ the classes of the elements $x_1, \ldots , x_ m$ correspond $a_ i/1$ where $a_1, \ldots , a_ m \in A$ are generators of $A$ over $R$, see Lemma 16.3.6. After replacing $x_ i$ by $a^ Nx_ i$ for $m < i \leq n$ we may assume the class of $x_ i$ is $a_ i/1 \in A_ a$ for some $a_ i \in A$. Consider the ring map

\[ \Psi : R[x_1, \ldots , x_ n] \longrightarrow A,\quad x_ i \longmapsto a_ i. \]

This is a surjective ring map. By replacing $f_ j$ by $a^ Nf_ j$ we may assume that $f_ j \in R[x_1, \ldots , x_ n]$ and that $\Psi (f_ j) = 0$ (since after all $f_ j(a_1/1, \ldots , a_ n/1) = 0$ in $A_ a$). Let $J = \mathop{\mathrm{Ker}}(\Psi )$. Then $A = R[x_1, \ldots , x_ n]/J$ is a presentation and $f_1, \ldots , f_ c \in J$ are elements such that $(J/J^2)_ a$ is freely generated by $f_1, \ldots , f_ c$ and such that $\det (\partial f_ j/\partial x_ i)_{i, j = 1, \ldots , c}$ maps to an invertible element of $A_ a$. It follows that (16.2.3.1) and (16.2.3.2) hold for $a^ e$ and all large enough $e$ as desired. $\square$


Comments (4)

Comment #2659 by Anonymous on

Proof of d) Why is there a presentation of with being free?

Proof of e) It should say that is a split injection. Also in the sequence below the sum should be from and should map from .

Comment #2675 by on

OK, I agree that the proof of (d) wasn't optimal. Also, thanks for pointing out the problem with indices in the proof of (e). The fixes are here.

Comment #2676 by Anonymous on

Oh, I forgot, in the proof of c): A few times it says instead of .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07EZ. Beware of the difference between the letter 'O' and the digit '0'.