The Stacks project

Lemma 5.12.10. Let $X$ be a topological space. Assume

  1. $X$ is quasi-compact,

  2. $X$ has a basis for the topology consisting of quasi-compact opens, and

  3. the intersection of two quasi-compact opens is quasi-compact.

For any $x \in X$ the connected component of $X$ containing $x$ is the intersection of all open and closed subsets of $X$ containing $x$.

Proof. Let $T$ be the connected component containing $x$. Let $S = \bigcap _{\alpha \in A} Z_\alpha $ be the intersection of all open and closed subsets $Z_\alpha $ of $X$ containing $x$. Note that $S$ is closed in $X$. Note that any finite intersection of $Z_\alpha $'s is a $Z_\alpha $. Because $T$ is connected and $x \in T$ we have $T \subset S$. It suffices to show that $S$ is connected. If not, then there exists a disjoint union decomposition $S = B \amalg C$ with $B$ and $C$ open and closed in $S$. In particular, $B$ and $C$ are closed in $X$, and so quasi-compact by Lemma 5.12.3 and assumption (1). By assumption (2) there exist quasi-compact opens $U, V \subset X$ with $B = S \cap U$ and $C = S \cap V$ (details omitted). Then $U \cap V \cap S = \emptyset $. Hence $\bigcap _\alpha U \cap V \cap Z_\alpha = \emptyset $. By assumption (3) the intersection $U \cap V$ is quasi-compact. By Lemma 5.12.6 for some $\alpha ' \in A$ we have $U \cap V \cap Z_{\alpha '} = \emptyset $. Since $X \setminus (U \cup V)$ is disjoint from $S$ and closed in $X$ hence quasi-compact, we can use the same lemma to see that $Z_{\alpha ''} \subset U \cup V$ for some $\alpha '' \in A$. Then $Z_\alpha = Z_{\alpha '} \cap Z_{\alpha ''}$ is contained in $U \cup V$ and disjoint from $U \cap V$. Hence $Z_\alpha = U \cap Z_\alpha \amalg V \cap Z_\alpha $ is a decomposition into two open pieces, hence $U \cap Z_\alpha $ and $V \cap Z_\alpha $ are open and closed in $X$. Thus, if $x \in B$ say, then we see that $S \subset U \cap Z_\alpha $ and we conclude that $C = \emptyset $. $\square$

Comments (2)

Comment #636 by Wei Xu on

Dear stacks project,

There is a possible small gap between "for some we have ." and "Hence ". Possibly we might need to add words like "(with some argurements) we may aslo assume this " before the sentense "Hence ..."

Comment #644 by on

Yes, I agree one needs an argument there. I added something here. Thanks!

There are also:

  • 2 comment(s) on Section 5.12: Quasi-compact spaces and maps

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 005F. Beware of the difference between the letter 'O' and the digit '0'.