Lemma 5.12.9. Let $X$ be a quasi-compact Kolmogorov space. Then the set $X_0$ of closed points of $X$ is quasi-compact.
Proof. Let $X_0 = \bigcup U_{i, 0}$ be an open covering. Write $U_{i, 0} = X_0 \cap U_ i$ for some open $U_ i \subset X$. Consider the complement $Z$ of $\bigcup U_ i$. This is a closed subset of $X$, hence quasi-compact (Lemma 5.12.3) and Kolmogorov. By Lemma 5.12.8 if $Z$ is nonempty it would have a closed point which contradicts the fact that $X_0 \subset \bigcup U_ i$. Hence $Z = \emptyset $ and $X = \bigcup U_ i$. Since $X$ is quasi-compact this covering has a finite subcover and we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: