Lemma 5.18.5. Let $X$ be Jacobson. The following types of subsets $T \subset X$ are Jacobson:

1. Open subspaces.

2. Closed subspaces.

3. Locally closed subspaces.

4. Unions of locally closed subspaces.

5. Constructible sets.

6. Any subset $T \subset X$ which locally on $X$ is a union of locally closed subsets.

In each of these cases closed points of $T$ are closed in $X$.

Proof. Let $X_0$ be the set of closed points of $X$. For any subset $T \subset X$ we let $(*)$ denote the property:

• Every nonempty locally closed subset of $T$ has a point closed in $X$.

Note that always $X_0 \cap T \subset T_0$. Hence property $(*)$ implies that $T$ is Jacobson. In addition it clearly implies that every closed point of $T$ is closed in $X$.

Suppose that $T=\bigcup _ i T_ i$ with $T_ i$ locally closed in $X$. Take $A\subset T$ a locally closed nonempty subset in $T$, then there exists a $T_ i$ such that $A\cap T_ i$ is nonempty, it is locally closed in $T_ i$ and so in $X$. As $X$ is Jacobson $A$ has a point closed in $X$. $\square$

There are also:

• 8 comment(s) on Section 5.18: Jacobson spaces

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).