Lemma 6.21.4. Let $f : X \to Y$ be a continuous map. Let $x \in X$. Let $\mathcal{G}$ be a presheaf of sets on $Y$. There is a canonical bijection of stalks $(f_ p\mathcal{G})_ x = \mathcal{G}_{f(x)}$.
Proof. This you can see as follows
\begin{eqnarray*} (f_ p\mathcal{G})_ x & = & \mathop{\mathrm{colim}}\nolimits _{x \in U} f_ p\mathcal{G}(U) \\ & = & \mathop{\mathrm{colim}}\nolimits _{x \in U} \mathop{\mathrm{colim}}\nolimits _{f(U) \subset V} \mathcal{G}(V) \\ & = & \mathop{\mathrm{colim}}\nolimits _{f(x) \in V} \mathcal{G}(V) \\ & = & \mathcal{G}_{f(x)} \end{eqnarray*}
Here we have used Categories, Lemma 4.14.10, and the fact that any $V$ open in $Y$ containing $f(x)$ occurs in the third description above. Details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: