Lemma 4.14.10. Let $\mathcal{I}$, $\mathcal{J}$ be index categories. Let $M : \mathcal{I} \times \mathcal{J} \to \mathcal{C}$ be a functor. We have

\[ \mathop{\mathrm{colim}}\nolimits _ i \mathop{\mathrm{colim}}\nolimits _ j M_{i, j} = \mathop{\mathrm{colim}}\nolimits _{i, j} M_{i, j} = \mathop{\mathrm{colim}}\nolimits _ j \mathop{\mathrm{colim}}\nolimits _ i M_{i, j} \]

provided all the indicated colimits exist. Similar for limits.

## Comments (0)

There are also: