4 Categories
-
Section 4.1: Introduction
-
Section 4.2: Definitions
-
Section 4.3: Opposite Categories and the Yoneda Lemma
-
Section 4.4: Products of pairs
-
Section 4.5: Coproducts of pairs
-
Section 4.6: Fibre products
-
Section 4.7: Examples of fibre products
-
Section 4.8: Fibre products and representability
-
Section 4.9: Pushouts
-
Section 4.10: Equalizers
-
Section 4.11: Coequalizers
-
Section 4.12: Initial and final objects
-
Section 4.13: Monomorphisms and Epimorphisms
-
Section 4.14: Limits and colimits
-
Section 4.15: Limits and colimits in the category of sets
-
Section 4.16: Connected limits
-
Section 4.17: Cofinal and initial categories
-
Section 4.18: Finite limits and colimits
-
Section 4.19: Filtered colimits
-
Section 4.20: Cofiltered limits
-
Section 4.21: Limits and colimits over preordered sets
-
Section 4.22: Essentially constant systems
-
Section 4.23: Exact functors
-
Section 4.24: Adjoint functors
-
Section 4.25: A criterion for representability
-
Section 4.26: Categorically compact objects
-
Section 4.27: Localization in categories
-
Section 4.28: Formal properties
-
Section 4.29: 2-categories
-
Section 4.30: (2, 1)-categories
-
Section 4.31: 2-fibre products
-
Section 4.32: Categories over categories
-
Section 4.33: Fibred categories
-
Section 4.34: Inertia
-
Section 4.35: Categories fibred in groupoids
-
Section 4.36: Presheaves of categories
-
Section 4.37: Presheaves of groupoids
-
Section 4.38: Categories fibred in sets
-
Section 4.39: Categories fibred in setoids
-
Section 4.40: Representable categories fibred in groupoids
-
Section 4.41: The 2-Yoneda lemma
-
Lemma 4.41.1: 2-Yoneda lemma for fibred categories
-
Lemma 4.41.2: 2-Yoneda lemma
-
Remark 4.41.3
-
Section 4.42: Representable 1-morphisms
-
Section 4.43: Monoidal categories
-
Section 4.44: Categories of dotted arrows