Lemma 4.22.12. Let \mathcal{I} and \mathcal{J} be filtered categories and denote p : \mathcal{I} \times \mathcal{J} \to \mathcal{J} the projection. Then \mathcal{I} \times \mathcal{J} is filtered and a diagram M : \mathcal{J} \to \mathcal{C} is essentially constant if and only if M \circ p : \mathcal{I} \times \mathcal{J} \to \mathcal{C} is essentially constant.
Proof. We omit the verification that \mathcal{I} \times \mathcal{J} is filtered. The equivalence follows from Lemma 4.22.11 because p is cofinal (verification omitted). \square
Comments (0)
There are also: