Definition 4.2.9. Let F : \mathcal{A} \to \mathcal{B} be a functor.
We say F is faithful if for any objects x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) the map
F : \mathop{\mathrm{Mor}}\nolimits _\mathcal {A}(x, y) \to \mathop{\mathrm{Mor}}\nolimits _\mathcal {B}(F(x), F(y))is injective.
If these maps are all bijective then F is called fully faithful.
The functor F is called essentially surjective if for any object y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B}) there exists an object x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) such that F(x) is isomorphic to y in \mathcal{B}.
Comments (0)
There are also: