Lemma 4.41.2 (2-Yoneda lemma). Let $\mathcal{S}\to \mathcal{C}$ be fibred in groupoids. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor

given by $G \mapsto G(\text{id}_ U)$ is an equivalence.

Lemma 4.41.2 (2-Yoneda lemma). Let $\mathcal{S}\to \mathcal{C}$ be fibred in groupoids. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \longrightarrow \mathcal{S}_ U \]

given by $G \mapsto G(\text{id}_ U)$ is an equivalence.

**Proof.**
Make a choice of pullbacks for $\mathcal{S}$ (see Definition 4.33.6). We define a functor

\[ \mathcal{S}_ U \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \]

as follows. Given $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$ the associated functor is

on objects: $(f : V \to U) \mapsto f^*x$, and

on morphisms: the arrow $(g : V'/U \to V/U)$ maps to the composition

\[ (f \circ g)^*x \xrightarrow {(\alpha _{g, f})_ x} g^*f^*x \rightarrow f^*x \]where $\alpha _{g, f}$ is as in Lemma 4.35.2.

We omit the verification that this is an inverse to the functor of the lemma. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #7202 by Anonymous on

Comment #7323 by Johan on