The Stacks project

4.41 The 2-Yoneda lemma

Let $\mathcal{C}$ be a category. The $2$-category of fibred categories over $\mathcal{C}$ was constructed/defined in Definition 4.33.9. If $\mathcal{S}$, $\mathcal{S}'$ are fibred categories over $\mathcal{C}$ then

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Fib}/\mathcal{C}}(\mathcal{S}, \mathcal{S}') \]

denotes the category of $1$-morphisms in this $2$-category. Here is the $2$-category analogue of the Yoneda lemma in the setting of fibred categories.

Lemma 4.41.1 (2-Yoneda lemma for fibred categories). Let $\mathcal{C}$ be a category. Let $\mathcal{S} \to \mathcal{C}$ be a fibred category over $\mathcal{C}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Fib}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \longrightarrow \mathcal{S}_ U \]

given by $G \mapsto G(\text{id}_ U)$ is an equivalence.

Proof. Make a choice of pullbacks for $\mathcal{S}$ (see Definition 4.33.6). We define a functor

\[ \mathcal{S}_ U \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\textit{Fib}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \]

as follows. Given $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$ the associated functor is

  1. on objects: $(f : V \to U) \mapsto f^*x$, and

  2. on morphisms: the arrow $(g : V'/U \to V/U)$ maps to the composition

    \[ (f \circ g)^*x \xrightarrow {(\alpha _{g, f})_ x} g^*f^*x \rightarrow f^*x \]

    where $\alpha _{g, f}$ is as in Lemma 4.33.7.

We omit the verification that this is an inverse to the functor of the lemma. $\square$

Let $\mathcal{C}$ be a category. The $2$-category of categories fibred in groupoids over $\mathcal{C}$ is a “full” sub $2$-category of the $2$-category of categories over $\mathcal{C}$ (see Definition 4.35.6). Hence if $\mathcal{S}$, $\mathcal{S}'$ are fibred in groupoids over $\mathcal{C}$ then

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}, \mathcal{S}') \]

denotes the category of $1$-morphisms in this $2$-category (see Definition 4.32.1). These are all groupoids, see remarks following Definition 4.35.6. Here is the $2$-category analogue of the Yoneda lemma.

Lemma 4.41.2 (2-Yoneda lemma). Let $\mathcal{S}\to \mathcal{C}$ be fibred in groupoids. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. The functor

\[ \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \longrightarrow \mathcal{S}_ U \]

given by $G \mapsto G(\text{id}_ U)$ is an equivalence.

Proof. Make a choice of pullbacks for $\mathcal{S}$ (see Definition 4.33.6). We define a functor

\[ \mathcal{S}_ U \longrightarrow \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \]

as follows. Given $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$ the associated functor is

  1. on objects: $(f : V \to U) \mapsto f^*x$, and

  2. on morphisms: the arrow $(g : V'/U \to V/U)$ maps to the composition

    \[ (f \circ g)^*x \xrightarrow {(\alpha _{g, f})_ x} g^*f^*x \rightarrow f^*x \]

    where $\alpha _{g, f}$ is as in Lemma 4.35.2.

We omit the verification that this is an inverse to the functor of the lemma. $\square$

Remark 4.41.3. We can use the $2$-Yoneda lemma to give an alternative proof of Lemma 4.37.3. Let $p : \mathcal{S} \to \mathcal{C}$ be a category fibred in groupoids. We define a contravariant functor $F$ from $\mathcal{C}$ to the category of groupoids as follows: for $U\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ let

\[ F(U) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}). \]

If $f : U \to V$ the induced functor $\mathcal{C}/U \to \mathcal{C}/V$ induces the morphism $F(f) : F(V) \to F(U)$. Clearly $F$ is a functor. Let $\mathcal{S}'$ be the associated category fibred in groupoids from Example 4.37.1. There is an obvious functor $G : \mathcal{S}' \to \mathcal{S}$ over $\mathcal{C}$ given by taking the pair $(U, x)$, where $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and $x \in F(U)$, to $x(\text{id}_ U) \in \mathcal{S}$. Now Lemma 4.41.2 implies that for each $U$,

\[ G_ U : \mathcal{S}'_ U = F(U)= \mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{C}/U, \mathcal{S}) \to \mathcal{S}_ U \]

is an equivalence, and thus $G$ is an equivalence between $\mathcal{S}$ and $\mathcal{S}'$ by Lemma 4.35.9.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GWH. Beware of the difference between the letter 'O' and the digit '0'.