4.42 Representable 1-morphisms
Let \mathcal{C} be a category. In this section we explain what it means for a 1-morphism between categories fibred in groupoids over \mathcal{C} to be representable.
Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). Let F : \mathcal{X} \to \mathcal{Y} and G : \mathcal{C}/U \to \mathcal{Y} be 1-morphisms of categories fibred in groupoids over \mathcal{C}. We want to describe the 2-fibre product
\xymatrix{ (\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \ar[r] \ar[d] & \mathcal{X} \ar[d]^ F \\ \mathcal{C}/U \ar[r]^ G & \mathcal{Y} }
Let y = G(\text{id}_ U) \in \mathcal{Y}_ U. Make a choice of pullbacks for \mathcal{Y} (see Definition 4.33.6). Then G is isomorphic to the functor (f : V \to U) \mapsto f^*y, see Lemma 4.41.2 and its proof. We may think of an object of (\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} as a quadruple (V, f : V \to U, x, \phi ), see Lemma 4.32.3. Using the description of G above we may think of \phi as an isomorphism \phi : f^*y \to F(x) in \mathcal{Y}_ V.
Lemma 4.42.1. In the situation above the fibre category of (\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} over an object f : V \to U of \mathcal{C}/U is the category described as follows:
objects are pairs (x, \phi ), where x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ V), and \phi : f^*y \to F(x) is a morphism in \mathcal{Y}_ V,
the set of morphisms between (x, \phi ) and (x', \phi ') is the set of morphisms \psi : x \to x' in \mathcal{X}_ V such that F(\psi ) = \phi ' \circ \phi ^{-1}.
Proof.
See discussion above.
\square
Lemma 4.42.2. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism. Let G : \mathcal{C}/U \to \mathcal{Y} be a 1-morphism. Then
(\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \longrightarrow \mathcal{C}/U
is a category fibred in groupoids.
Proof.
We have already seen in Lemma 4.35.7 that the composition
(\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \longrightarrow \mathcal{C}/U \longrightarrow \mathcal{C}
is a category fibred in groupoids. Then the lemma follows from Lemma 4.35.13.
\square
Definition 4.42.3. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism. We say F is representable, or that \mathcal{X} is relatively representable over \mathcal{Y}, if for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and any G : \mathcal{C}/U \to \mathcal{Y} the category fibred in groupoids
(\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \longrightarrow \mathcal{C}/U
is representable.
Lemma 4.42.4. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism. If F is representable then every one of the functors
F_ U : \mathcal{X}_ U \longrightarrow \mathcal{Y}_ U
between fibre categories is faithful.
Proof.
Clear from the description of fibre categories in Lemma 4.42.1 and the characterization of representable fibred categories in Lemma 4.40.2.
\square
Lemma 4.42.5. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism. Make a choice of pullbacks for \mathcal{Y}. Assume
each functor F_ U : \mathcal{X}_ U \longrightarrow \mathcal{Y}_ U between fibre categories is faithful, and
for each U and each y \in \mathcal{Y}_ U the presheaf
(f : V \to U) \longmapsto \{ (x, \phi ) \mid x \in \mathcal{X}_ V, \phi : f^*y \to F(x)\} /\cong
is a representable presheaf on \mathcal{C}/U.
Then F is representable.
Proof.
Clear from the description of fibre categories in Lemma 4.42.1 and the characterization of representable fibred categories in Lemma 4.40.2.
\square
Before we state the next lemma we point out that the 2-category of categories fibred in groupoids is a (2, 1)-category, and hence we know what it means to say that it has a final object (see Definition 4.31.1). And it has a final object namely \text{id} : \mathcal{C} \to \mathcal{C}. Thus we define 2-products of categories fibred in groupoids over \mathcal{C} as the 2-fibre products
\mathcal{X} \times \mathcal{Y} := \mathcal{X} \times _\mathcal {C} \mathcal{Y}.
With this definition in place the following lemma makes sense.
Lemma 4.42.6. Let \mathcal{C} be a category. Let \mathcal{S} \to \mathcal{C} be a category fibred in groupoids. Assume \mathcal{C} has products of pairs of objects and fibre products. The following are equivalent:
The diagonal \mathcal{S} \to \mathcal{S} \times \mathcal{S} is representable.
For every U in \mathcal{C}, any G : \mathcal{C}/U \to \mathcal{S} is representable.
Proof.
Suppose the diagonal is representable, and let U, G be given. Consider any V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and any G' : \mathcal{C}/V \to \mathcal{S}. Note that \mathcal{C}/U \times \mathcal{C}/V = \mathcal{C}/U \times V is representable. Hence the fibre product
\xymatrix{ (\mathcal{C}/U \times V) \times _{(\mathcal{S} \times \mathcal{S})} \mathcal{S} \ar[r] \ar[d] & \mathcal{S} \ar[d] \\ \mathcal{C}/U \times V \ar[r]^{(G, G')} & \mathcal{S} \times \mathcal{S} }
is representable by assumption. This means there exists W \to U \times V in \mathcal{C}, such that
\xymatrix{ \mathcal{C}/W \ar[d] \ar[r] & \mathcal{S} \ar[d] \\ \mathcal{C}/U \times \mathcal{C}/V \ar[r] & \mathcal{S} \times \mathcal{S} }
is cartesian. This implies that \mathcal{C}/W \cong \mathcal{C}/U \times _\mathcal {S} \mathcal{C}/V (see Lemma 4.31.11 and Remark 4.35.8) as desired.
Assume (2) holds. Consider any V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and any (G, G') : \mathcal{C}/V \to \mathcal{S} \times \mathcal{S}. We have to show that \mathcal{C}/V \times _{\mathcal{S} \times \mathcal{S}} \mathcal{S} is representable. What we know is that \mathcal{C}/V \times _{G, \mathcal{S}, G'} \mathcal{C}/V is representable, say by a : W \to V in \mathcal{C}/V. The equivalence
\mathcal{C}/W \to \mathcal{C}/V \times _{G, \mathcal{S}, G'} \mathcal{C}/V
followed by the second projection to \mathcal{C}/V gives a second morphism a' : W \to V. Consider W' = W \times _{(a, a'), V \times V} V. There exists an equivalence
\mathcal{C}/W' \cong \mathcal{C}/V \times _{\mathcal{S} \times \mathcal{S}} \mathcal{S}
namely
\begin{eqnarray*} \mathcal{C}/W' & \cong & \mathcal{C}/W \times _{(\mathcal{C}/V \times \mathcal{C}/V)} \mathcal{C}/V \\ & \cong & \left(\mathcal{C}/V \times _{(G, \mathcal{S}, G')} \mathcal{C}/V\right) \times _{(\mathcal{C}/V \times \mathcal{C}/V)} \mathcal{C}/V \\ & \cong & \mathcal{C}/V \times _{(\mathcal{S} \times \mathcal{S})} \mathcal{S} \end{eqnarray*}
(for the last isomorphism see Lemma 4.31.12 and Remark 4.35.8) which proves the lemma.
\square
Bibliographic notes: Parts of this have been taken from Vistoli's notes [Vis2].
Comments (1)
Comment #1779 by Kiran Kedlaya on