Lemma 4.42.2. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Let F : \mathcal{X} \to \mathcal{Y} be a 1-morphism. Let G : \mathcal{C}/U \to \mathcal{Y} be a 1-morphism. Then
(\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \longrightarrow \mathcal{C}/U
is a category fibred in groupoids.
Proof.
We have already seen in Lemma 4.35.7 that the composition
(\mathcal{C}/U) \times _\mathcal {Y} \mathcal{X} \longrightarrow \mathcal{C}/U \longrightarrow \mathcal{C}
is a category fibred in groupoids. Then the lemma follows from Lemma 4.35.13.
\square
Comments (0)
There are also: