Lemma 4.35.13. Let \mathcal{C} be a category. Let U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}). If p : \mathcal{S} \to \mathcal{C} is a category fibred in groupoids and p factors through p' : \mathcal{S} \to \mathcal{C}/U then p' : \mathcal{S} \to \mathcal{C}/U is fibred in groupoids.
Proof. We have already seen in Lemma 4.33.11 that p' is a fibred category. Hence it suffices to prove the fibre categories are groupoids, see Lemma 4.35.2. For V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) we have
\mathcal{S}_ V = \coprod \nolimits _{f : V \to U} \mathcal{S}_{(f : V \to U)}
where the left hand side is the fibre category of p and the right hand side is the disjoint union of the fibre categories of p'. Hence the result. \square
Comments (0)
There are also: