Lemma 4.35.14. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be functors between categories. If $\mathcal{A}$ is fibred in groupoids over $\mathcal{B}$ and $\mathcal{B}$ is fibred in groupoids over $\mathcal{C}$, then $\mathcal{A}$ is fibred in groupoids over $\mathcal{C}$.

Proof. One can prove this directly from the definition. However, we will argue using the criterion of Lemma 4.35.2. By Lemma 4.33.12 we see that $\mathcal{A}$ is fibred over $\mathcal{C}$. To finish the proof we show that the fibre category $\mathcal{A}_ U$ is a groupoid for $U$ in $\mathcal{C}$. Namely, if $x \to y$ is a morphism of $\mathcal{A}_ U$, then its image in $\mathcal{B}$ is an isomorphism as $\mathcal{B}_ U$ is a groupoid. But then $x \to y$ is an isomorphism, for example by Lemma 4.33.2 and the fact that every morphism of $\mathcal{A}$ is strongly $\mathcal{B}$-cartesian (see Lemma 4.35.2). $\square$

There are also:

• 2 comment(s) on Section 4.35: Categories fibred in groupoids

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).