Lemma 4.35.15. Let p : \mathcal{S} \to \mathcal{C} be a category fibred in groupoids. Let x \to y and z \to y be morphisms of \mathcal{S}. If p(x) \times _{p(y)} p(z) exists, then x \times _ y z exists and p(x \times _ y z) = p(x) \times _{p(y)} p(z).
Proof. Follows from Lemma 4.33.13. \square
Comments (0)
There are also: