The Stacks project

Lemma 4.42.6. Let $\mathcal{C}$ be a category. Let $\mathcal{S} \to \mathcal{C}$ be a category fibred in groupoids. Assume $\mathcal{C}$ has products of pairs of objects and fibre products. The following are equivalent:

  1. The diagonal $\mathcal{S} \to \mathcal{S} \times \mathcal{S}$ is representable.

  2. For every $U$ in $\mathcal{C}$, any $G : \mathcal{C}/U \to \mathcal{S}$ is representable.

Proof. Suppose the diagonal is representable, and let $U, G$ be given. Consider any $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and any $G' : \mathcal{C}/V \to \mathcal{S}$. Note that $\mathcal{C}/U \times \mathcal{C}/V = \mathcal{C}/U \times V$ is representable. Hence the fibre product

\[ \xymatrix{ (\mathcal{C}/U \times V) \times _{(\mathcal{S} \times \mathcal{S})} \mathcal{S} \ar[r] \ar[d] & \mathcal{S} \ar[d] \\ \mathcal{C}/U \times V \ar[r]^{(G, G')} & \mathcal{S} \times \mathcal{S} } \]

is representable by assumption. This means there exists $W \to U \times V$ in $\mathcal{C}$, such that

\[ \xymatrix{ \mathcal{C}/W \ar[d] \ar[r] & \mathcal{S} \ar[d] \\ \mathcal{C}/U \times \mathcal{C}/V \ar[r] & \mathcal{S} \times \mathcal{S} } \]

is cartesian. This implies that $\mathcal{C}/W \cong \mathcal{C}/U \times _\mathcal {S} \mathcal{C}/V$ (see Lemma 4.31.11 and Remark 4.35.8) as desired.

Assume (2) holds. Consider any $V \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and any $(G, G') : \mathcal{C}/V \to \mathcal{S} \times \mathcal{S}$. We have to show that $\mathcal{C}/V \times _{\mathcal{S} \times \mathcal{S}} \mathcal{S}$ is representable. What we know is that $\mathcal{C}/V \times _{G, \mathcal{S}, G'} \mathcal{C}/V$ is representable, say by $a : W \to V$ in $\mathcal{C}/V$. The equivalence

\[ \mathcal{C}/W \to \mathcal{C}/V \times _{G, \mathcal{S}, G'} \mathcal{C}/V \]

followed by the second projection to $\mathcal{C}/V$ gives a second morphism $a' : W \to V$. Consider $W' = W \times _{(a, a'), V \times V} V$. There exists an equivalence

\[ \mathcal{C}/W' \cong \mathcal{C}/V \times _{\mathcal{S} \times \mathcal{S}} \mathcal{S} \]


\begin{eqnarray*} \mathcal{C}/W' & \cong & \mathcal{C}/W \times _{(\mathcal{C}/V \times \mathcal{C}/V)} \mathcal{C}/V \\ & \cong & \left(\mathcal{C}/V \times _{(G, \mathcal{S}, G')} \mathcal{C}/V\right) \times _{(\mathcal{C}/V \times \mathcal{C}/V)} \mathcal{C}/V \\ & \cong & \mathcal{C}/V \times _{(\mathcal{S} \times \mathcal{S})} \mathcal{S} \end{eqnarray*}

(for the last isomorphism see Lemma 4.31.12 and Remark 4.35.8) which proves the lemma. $\square$

Comments (0)

There are also:

  • 1 comment(s) on Section 4.42: Representable 1-morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02YA. Beware of the difference between the letter 'O' and the digit '0'.