The Stacks project

Lemma 4.32.3. Let $\mathcal{C}$ be a category. The $(2, 1)$-category of categories over $\mathcal{C}$ has 2-fibre products. Suppose that $F : \mathcal{X} \to \mathcal{S}$ and $G : \mathcal{Y} \to \mathcal{S}$ are morphisms of categories over $\mathcal{C}$. An explicit 2-fibre product $\mathcal{X} \times _\mathcal {S}\mathcal{Y}$ is given by the following description

  1. an object of $\mathcal{X} \times _\mathcal {S} \mathcal{Y}$ is a quadruple $(U, x, y, f)$, where $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)$, $y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{Y}_ U)$, and $f : F(x) \to G(y)$ is an isomorphism in $\mathcal{S}_ U$,

  2. a morphism $(U, x, y, f) \to (U', x', y', f')$ is given by a pair $(a, b)$, where $a : x \to x'$ is a morphism in $\mathcal{X}$, and $b : y \to y'$ is a morphism in $\mathcal{Y}$ such that

    1. $a$ and $b$ induce the same morphism $U \to U'$, and

    2. the diagram

      \[ \xymatrix{ F(x) \ar[r]^ f \ar[d]^{F(a)} & G(y) \ar[d]^{G(b)} \\ F(x') \ar[r]^{f'} & G(y') } \]

      is commutative.

The functors $p : \mathcal{X} \times _\mathcal {S}\mathcal{Y} \to \mathcal{X}$ and $q : \mathcal{X} \times _\mathcal {S}\mathcal{Y} \to \mathcal{Y}$ are the forgetful functors in this case. The transformation $\psi : F \circ p \to G \circ q$ is given on the object $\xi = (U, x, y, f)$ by $\psi _\xi = f : F(p(\xi )) = F(x) \to G(y) = G(q(\xi ))$.

Proof. Let us check the universal property: let $p_\mathcal {W} : \mathcal{W}\to \mathcal{C}$ be a category over $\mathcal{C}$, let $X : \mathcal{W} \to \mathcal{X}$ and $Y : \mathcal{W} \to \mathcal{Y}$ be functors over $\mathcal{C}$, and let $t : F \circ X \to G \circ Y$ be an isomorphism of functors over $\mathcal{C}$. The desired functor $\gamma : \mathcal{W} \to \mathcal{X} \times _\mathcal {S} \mathcal{Y}$ is given by $W \mapsto (p_\mathcal {W}(W), X(W), Y(W), t_ W)$. Details omitted; compare with Lemma 4.31.4. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 4.32: Categories over categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0040. Beware of the difference between the letter 'O' and the digit '0'.