The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

4.31 Categories over categories

In this section we have a functor $p : \mathcal{S} \to \mathcal{C}$. We think of $\mathcal{S}$ as being on top and of $\mathcal{C}$ as being at the bottom. To make sure that everybody knows what we are talking about we define the $2$-category of categories over $\mathcal{C}$.

Definition 4.31.1. Let $\mathcal{C}$ be a category. The $2$-category of categories over $\mathcal{C}$ is the $2$-category defined as follows:

  1. Its objects will be functors $p : \mathcal{S} \to \mathcal{C}$.

  2. Its $1$-morphisms $(\mathcal{S}, p) \to (\mathcal{S}', p')$ will be functors $G : \mathcal{S} \to \mathcal{S}'$ such that $p' \circ G = p$.

  3. Its $2$-morphisms $t : G \to H$ for $G, H : (\mathcal{S}, p) \to (\mathcal{S}', p')$ will be morphisms of functors such that $p'(t_ x) = \text{id}_{p(x)}$ for all $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$.

In this situation we will denote

\[ \mathop{Mor}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{S}, \mathcal{S}') \]

the category of $1$-morphisms between $(\mathcal{S}, p)$ and $(\mathcal{S}', p')$

In this $2$-category we define horizontal and vertical composition exactly as is done for $\textit{Cat}$ in Section 4.27. The axioms of a $2$-category are satisfied for the same reason that the hold in $\textit{Cat}$. To see this one can also use that the axioms hold in $\textit{Cat}$ and verify things such as “vertical composition of $2$-morphisms over $\mathcal{C}$ gives another $2$-morphism over $\mathcal{C}$”. This is clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category, and some notions of lifting associated to this situation.

Definition 4.31.2. Let $\mathcal{C}$ be a category. Let $p : \mathcal{S} \to \mathcal{C}$ be a category over $\mathcal{C}$.

  1. The fibre category over an object $U\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is the category $\mathcal{S}_ U$ with objects

    \[ \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U) = \{ x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) : p(x) = U\} \]

    and morphisms

    \[ \mathop{Mor}\nolimits _{\mathcal{S}_ U}(x, y) = \{ \phi \in \mathop{Mor}\nolimits _\mathcal {S}(x, y) : p(\phi ) = \text{id}_ U\} . \]
  2. A lift of an object $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is an object $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$ such that $p(x) = U$, i.e., $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$. We will also sometime say that $x$ lies over $U$.

  3. Similarly, a lift of a morphism $f : V \to U$ in $\mathcal{C}$ is a morphism $\phi : y \to x$ in $\mathcal{S}$ such that $p(\phi ) = f$. We sometimes say that $\phi $ lies over $f$.

There are some observations we could make here. For example if $F : (\mathcal{S}, p) \to (\mathcal{S}', p')$ is a $1$-morphism of categories over $\mathcal{C}$, then $F$ induces functors of fibre categories $F : \mathcal{S}_ U \to \mathcal{S}'_ U$. Similarly for $2$-morphisms.

Here is the obligatory lemma describing the $2$-fibre product in the $(2, 1)$-category of categories over $\mathcal{C}$.

Lemma 4.31.3. Let $\mathcal{C}$ be a category. The $(2, 1)$-category of categories over $\mathcal{C}$ has 2-fibre products. Suppose that $F : \mathcal{X} \to \mathcal{S}$ and $G : \mathcal{Y} \to \mathcal{S}$ are morphisms of categories over $\mathcal{C}$. An explicit 2-fibre product $\mathcal{X} \times _\mathcal {S}\mathcal{Y}$ is given by the following description

  1. an object of $\mathcal{X} \times _\mathcal {S} \mathcal{Y}$ is a quadruple $(U, x, y, f)$, where $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ U)$, $y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{Y}_ U)$, and $f : F(x) \to G(y)$ is an isomorphism in $\mathcal{S}_ U$,

  2. a morphism $(U, x, y, f) \to (U', x', y', f')$ is given by a pair $(a, b)$, where $a : x \to x'$ is a morphism in $\mathcal{X}$, and $b : y \to y'$ is a morphism in $\mathcal{Y}$ such that

    1. $a$ and $b$ induce the same morphism $U \to U'$, and

    2. the diagram

      \[ \xymatrix{ F(x) \ar[r]^ f \ar[d]^{F(a)} & G(y) \ar[d]^{G(b)} \\ F(x') \ar[r]^{f'} & G(y') } \]

      is commutative.

The functors $p : \mathcal{X} \times _\mathcal {S}\mathcal{Y} \to \mathcal{X}$ and $q : \mathcal{X} \times _\mathcal {S}\mathcal{Y} \to \mathcal{Y}$ are the forgetful functors in this case. The transformation $\psi : F \circ p \to G \circ q$ is given on the object $\xi = (U, x, y, f)$ by $\psi _\xi = f : F(p(\xi )) = F(x) \to G(y) = G(q(\xi ))$.

Proof. Let us check the universal property: let $p_\mathcal {W} : \mathcal{W}\to \mathcal{C}$ be a category over $\mathcal{C}$, let $X : \mathcal{W} \to \mathcal{X}$ and $Y : \mathcal{W} \to \mathcal{Y}$ be functors over $\mathcal{C}$, and let $t : F \circ X \to G \circ Y$ be an isomorphism of functors over $\mathcal{C}$. The desired functor $\gamma : \mathcal{W} \to \mathcal{X} \times _\mathcal {S} \mathcal{Y}$ is given by $W \mapsto (p_\mathcal {W}(W), X(W), Y(W), t_ W)$. Details omitted; compare with Lemma 4.30.4. $\square$

Lemma 4.31.4. Let $\mathcal{C}$ be a category. Let $f : \mathcal{X} \to \mathcal{S}$ and $g : \mathcal{Y} \to \mathcal{S}$ be morphisms of categories over $\mathcal{C}$. For any object $U$ of $\mathcal{C}$ we have the following identity of fibre categories

\[ \left(\mathcal{X} \times _\mathcal {S}\mathcal{Y}\right)_ U = \mathcal{X}_ U \times _{\mathcal{S}_ U} \mathcal{Y}_ U \]

Proof. Omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02XG. Beware of the difference between the letter 'O' and the digit '0'.