The Stacks project

Lemma 4.31.4. In the $(2, 1)$-category of categories $2$-fibre products exist and are given by the construction of Example 4.31.3.

Proof. Let us check the universal property: let $\mathcal{W}$ be a category, let $a : \mathcal{W} \to \mathcal{A}$ and $b : \mathcal{W} \to \mathcal{B}$ be functors, and let $t : F \circ a \to G \circ b$ be an isomorphism of functors.

Consider the functor $\gamma : \mathcal{W} \to \mathcal{A} \times _\mathcal {C}\mathcal{B}$ given by $W \mapsto (a(W), b(W), t_ W)$. (Check this is a functor omitted.) Moreover, consider $\alpha : a \to p \circ \gamma $ and $\beta : b \to q \circ \gamma $ obtained from the identities $p \circ \gamma = a$ and $q \circ \gamma = b$. Then it is clear that $(\gamma , \alpha , \beta )$ is a morphism from $(W, a, b, t)$ to $(\mathcal{A} \times _\mathcal {C} \mathcal{B}, p, q, \psi )$.

Let $(k, \alpha ', \beta ') : (W, a, b, t) \to (\mathcal{A} \times _\mathcal {C} \mathcal{B}, p, q, \psi )$ be a second such morphism. For an object $W$ of $\mathcal{W}$ let us write $k(W) = (a_ k(W), b_ k(W), t_{k, W})$. Hence $p(k(W)) = a_ k(W)$ and so on. The map $\alpha '$ corresponds to functorial maps $\alpha ' : a(W) \to a_ k(W)$. Since we are working in the $(2, 1)$-category of categories, in fact each of the maps $a(W) \to a_ k(W)$ is an isomorphism. We can use these (and their counterparts $b(W) \to b_ k(W)$) to get isomorphisms

\[ \delta _ W : \gamma (W) = (a(W), b(W), t_ W) \longrightarrow (a_ k(W), b_ k(W), t_{k, W}) = k(W). \]

It is straightforward to show that $\delta $ defines a $2$-isomorphism between $\gamma $ and $k$ in the $2$-category of $2$-commutative diagrams as desired. $\square$

Comments (0)

There are also:

  • 6 comment(s) on Section 4.31: 2-fibre products

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02X9. Beware of the difference between the letter 'O' and the digit '0'.