Remark 4.31.5. Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be categories. Let $F : \mathcal{A} \to \mathcal{C}$ and $G : \mathcal{B} \to \mathcal{C}$ be functors. Another, slightly more symmetrical, construction of a $2$-fibre product $\mathcal{A} \times _\mathcal {C} \mathcal{B}$ is as follows. An object is a quintuple $(A, B, C, a, b)$ where $A, B, C$ are objects of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and where $a : F(A) \to C$ and $b : G(B) \to C$ are isomorphisms. A morphism $(A, B, C, a, b) \to (A', B', C', a', b')$ is given by a triple of morphisms $A \to A', B \to B', C \to C'$ compatible with the morphisms $a, b, a', b'$. We can prove directly that this leads to a $2$-fibre product. However, it is easier to observe that the functor $(A, B, C, a, b) \mapsto (A, B, b^{-1} \circ a)$ gives an equivalence from the category of quintuples to the category constructed in Example 4.31.3.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: