Remark 4.31.5. Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be categories. Let $F : \mathcal{A} \to \mathcal{C}$ and $G : \mathcal{B} \to \mathcal{C}$ be functors. Another, slightly more symmetrical, construction of a $2$-fibre product $\mathcal{A} \times _\mathcal {C} \mathcal{B}$ is as follows. An object is a quintuple $(A, B, C, a, b)$ where $A, B, C$ are objects of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and where $a : F(A) \to C$ and $b : G(B) \to C$ are isomorphisms. A morphism $(A, B, C, a, b) \to (A', B', C', a', b')$ is given by a triple of morphisms $A \to A', B \to B', C \to C'$ compatible with the morphisms $a, b, a', b'$. We can prove directly that this leads to a $2$-fibre product. However, it is easier to observe that the functor $(A, B, C, a, b) \mapsto (A, B, b^{-1} \circ a)$ gives an equivalence from the category of quintuples to the category constructed in Example 4.31.3.

There are also:

• 6 comment(s) on Section 4.31: 2-fibre products

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).