Lemma 4.31.6. Let
\xymatrix{ & \mathcal{Y} \ar[d]_ I \ar[rd]^ K & \\ \mathcal{X} \ar[r]^ H \ar[rd]^ L & \mathcal{Z} \ar[rd]^ M & \mathcal{B} \ar[d]^ G \\ & \mathcal{A} \ar[r]^ F & \mathcal{C} }
be a 2-commutative diagram of categories. A choice of isomorphisms \alpha : G \circ K \to M \circ I and \beta : M \circ H \to F \circ L determines a morphism
\mathcal{X} \times _\mathcal {Z} \mathcal{Y} \longrightarrow \mathcal{A} \times _\mathcal {C} \mathcal{B}
of 2-fibre products associated to this situation.
Comments (0)
There are also: