4.31 2-fibre products
In this section we introduce 2-fibre products. Suppose that \mathcal{C} is a 2-category. We say that a diagram
\xymatrix{ w \ar[r] \ar[d] & y \ar[d] \\ x \ar[r] & z }
2-commutes if the two 1-morphisms w \to y \to z and w \to x \to z are 2-isomorphic. In a 2-category it is more natural to ask for 2-commutativity of diagrams than for actually commuting diagrams. (Indeed, some may say that we should not work with strict 2-categories at all, and in a “weak” 2-category the notion of a commutative diagram of 1-morphisms does not even make sense.) Correspondingly the notion of a fibre product has to be adjusted.
Let \mathcal{C} be a 2-category. Let x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, z) and g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(y, z). In order to define the 2-fibre product of f and g we are going to look at 2-commutative diagrams
\xymatrix{ & w \ar[r]_ a \ar[d]_ b & x \ar[d]^{f} \\ & y \ar[r]^{g} & z. }
Now in the case of categories, the fibre product is a final object in the category of such diagrams. Correspondingly a 2-fibre product is a final object in a 2-category (see definition below). The 2-category of 2-commutative diagrams over f and g is the 2-category defined as follows:
Objects are quadruples (w, a, b, \phi ) as above where \phi is an invertible 2-morphism \phi : f \circ a \to g \circ b,
1-morphisms from (w', a', b', \phi ') to (w, a, b, \phi ) are given by (k : w' \to w, \alpha : a' \to a \circ k, \beta : b' \to b \circ k) such that
\xymatrix{ f \circ a' \ar[rr]_{\text{id}_ f \star \alpha } \ar[d]_{\phi '} & & f \circ a \circ k \ar[d]^{\phi \star \text{id}_ k} \\ g \circ b' \ar[rr]^{\text{id}_ g \star \beta } & & g \circ b \circ k }
is commutative,
given a second 1-morphism (k', \alpha ', \beta ') : (w'', a'', b'', \phi '') \to (w', \alpha ', \beta ', \phi ') the composition of 1-morphisms is given by the rule
(k, \alpha , \beta ) \circ (k', \alpha ', \beta ') = (k \circ k', (\alpha \star \text{id}_{k'}) \circ \alpha ', (\beta \star \text{id}_{k'}) \circ \beta '),
a 2-morphism between 1-morphisms (k_ i, \alpha _ i, \beta _ i), i = 1, 2 with the same source and target is given by a 2-morphism \delta : k_1 \to k_2 such that
\xymatrix{ a' \ar[rd]_{\alpha _2} \ar[r]_{\alpha _1} & a \circ k_1 \ar[d]^{\text{id}_ a \star \delta } & & b \circ k_1 \ar[d]_{\text{id}_ b \star \delta } & b' \ar[l]^{\beta _1} \ar[ld]^{\beta _2} \\ & a \circ k_2 & & b \circ k_2 & }
commute,
vertical composition of 2-morphisms is given by vertical composition of the morphisms \delta in \mathcal{C}, and
horizontal composition of the diagram
\xymatrix{ (w'', a'', b'', \phi '') \rrtwocell ^{(k'_1, \alpha '_1, \beta '_1)}_{(k'_2, \alpha '_2, \beta '_2)}{\delta '} & & (w', a', b', \phi ') \rrtwocell ^{(k_1, \alpha _1, \beta _1)}_{(k_2, \alpha _2, \beta _2)}{\delta } & & (w, a, b, \phi ) }
is given by the diagram
\xymatrix@C=12pc{ (w'', a'', b'', \phi '') \rtwocell ^{(k_1 \circ k'_1, (\alpha _1 \star \text{id}_{k'_1}) \circ \alpha '_1, (\beta _1 \star \text{id}_{k'_1}) \circ \beta '_1)}_{(k_2 \circ k'_2, (\alpha _2 \star \text{id}_{k'_2}) \circ \alpha '_2, (\beta _2 \star \text{id}_{k'_2}) \circ \beta '_2)}{\ \ \ \delta \star \delta '} & (w, a, b, \phi ) }
Note that if \mathcal{C} is actually a (2, 1)-category, the morphisms \alpha and \beta in (2) above are automatically also isomorphisms1. In addition the 2-category of 2-commutative diagrams is also a (2, 1)-category if \mathcal{C} is a (2, 1)-category.
Definition 4.31.1. A final object of a (2, 1)-category \mathcal{C} is an object x such that
for every y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there is a morphism y \to x, and
every two morphisms y \to x are isomorphic by a unique 2-morphism.
Likely, in the more general case of 2-categories there are different flavours of final objects. We do not want to get into this and hence we only define 2-fibre products in the (2, 1)-case.
Definition 4.31.2. Let \mathcal{C} be a (2, 1)-category. Let x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, z) and g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(y, z). A 2-fibre product of f and g is a final object in the category of 2-commutative diagrams described above. If a 2-fibre product exists we will denote it x \times _ z y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), and denote the required morphisms p\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ z y, x) and q\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ z y, y) making the diagram
\xymatrix{ & x \times _ z y \ar[r]^{p} \ar[d]_ q & x \ar[d]^{f} \\ & y \ar[r]^{g} & z }
2-commute and we will denote the given invertible 2-morphism exhibiting this by \psi : f \circ p \to g \circ q.
Thus the following universal property holds: for any w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and morphisms a \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x) and b \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, y) with a given 2-isomorphism \phi : f \circ a \to g\circ b there is a \gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times _ z y) making the diagram
\xymatrix{ w\ar[rrrd]^ a \ar@{-->}[rrd]_\gamma \ar[rrdd]_ b & & \\ & & x \times _ z y \ar[r]_ p \ar[d]_ q & x \ar[d]^{f} \\ & & y \ar[r]^{g} & z }
2-commute such that for suitable choices of a \to p \circ \gamma and b \to q \circ \gamma the diagram
\xymatrix{ f \circ a \ar[r] \ar[d]_\phi & f \circ p \circ \gamma \ar[d]^{\psi \star \text{id}_\gamma } \\ g\circ b \ar[r] & g \circ q \circ \gamma }
commutes. Moreover \gamma is unique up to isomorphism. Of course the exact properties are finer than this. All of the cases of 2-fibre products that we will need later on come from the following example of 2-fibre products in the 2-category of categories.
Example 4.31.3. Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be categories. Let F : \mathcal{A} \to \mathcal{C} and G : \mathcal{B} \to \mathcal{C} be functors. We define a category \mathcal{A} \times _\mathcal {C} \mathcal{B} as follows:
an object of \mathcal{A} \times _\mathcal {C} \mathcal{B} is a triple (A, B, f), where A\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}), B\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B}), and f : F(A) \to G(B) is an isomorphism in \mathcal{C},
a morphism (A, B, f) \to (A', B', f') is given by a pair (a, b), where a : A \to A' is a morphism in \mathcal{A}, and b : B \to B' is a morphism in \mathcal{B} such that the diagram
\xymatrix{ F(A) \ar[r]^ f \ar[d]^{F(a)} & G(B) \ar[d]^{G(b)} \\ F(A') \ar[r]^{f'} & G(B') }
is commutative.
Moreover, we define functors p : \mathcal{A} \times _\mathcal {C}\mathcal{B} \to \mathcal{A} and q : \mathcal{A} \times _\mathcal {C}\mathcal{B} \to \mathcal{B} by setting
p(A, B, f) = A, \quad q(A, B, f) = B,
in other words, these are the forgetful functors. We define a transformation of functors \psi : F \circ p \to G \circ q. On the object \xi = (A, B, f) it is given by \psi _\xi = f : F(p(\xi )) = F(A) \to G(B) = G(q(\xi )).
Lemma 4.31.4. In the (2, 1)-category of categories 2-fibre products exist and are given by the construction of Example 4.31.3.
Proof.
Let us check the universal property: let \mathcal{W} be a category, let a : \mathcal{W} \to \mathcal{A} and b : \mathcal{W} \to \mathcal{B} be functors, and let t : F \circ a \to G \circ b be an isomorphism of functors.
Consider the functor \gamma : \mathcal{W} \to \mathcal{A} \times _\mathcal {C}\mathcal{B} given by W \mapsto (a(W), b(W), t_ W). (Check this is a functor omitted.) Moreover, consider \alpha : a \to p \circ \gamma and \beta : b \to q \circ \gamma obtained from the identities p \circ \gamma = a and q \circ \gamma = b. Then it is clear that (\gamma , \alpha , \beta ) is a morphism from (W, a, b, t) to (\mathcal{A} \times _\mathcal {C} \mathcal{B}, p, q, \psi ).
Let (k, \alpha ', \beta ') : (W, a, b, t) \to (\mathcal{A} \times _\mathcal {C} \mathcal{B}, p, q, \psi ) be a second such morphism. For an object W of \mathcal{W} let us write k(W) = (a_ k(W), b_ k(W), t_{k, W}). Hence p(k(W)) = a_ k(W) and so on. The map \alpha ' corresponds to functorial maps \alpha ' : a(W) \to a_ k(W). Since we are working in the (2, 1)-category of categories, in fact each of the maps a(W) \to a_ k(W) is an isomorphism. We can use these (and their counterparts b(W) \to b_ k(W)) to get isomorphisms
\delta _ W : \gamma (W) = (a(W), b(W), t_ W) \longrightarrow (a_ k(W), b_ k(W), t_{k, W}) = k(W).
It is straightforward to show that \delta defines a 2-isomorphism between \gamma and k in the 2-category of 2-commutative diagrams as desired.
\square
Lemma 4.31.6. Let
\xymatrix{ & \mathcal{Y} \ar[d]_ I \ar[rd]^ K & \\ \mathcal{X} \ar[r]^ H \ar[rd]^ L & \mathcal{Z} \ar[rd]^ M & \mathcal{B} \ar[d]^ G \\ & \mathcal{A} \ar[r]^ F & \mathcal{C} }
be a 2-commutative diagram of categories. A choice of isomorphisms \alpha : G \circ K \to M \circ I and \beta : M \circ H \to F \circ L determines a morphism
\mathcal{X} \times _\mathcal {Z} \mathcal{Y} \longrightarrow \mathcal{A} \times _\mathcal {C} \mathcal{B}
of 2-fibre products associated to this situation.
Proof.
Just use the functor
(X, Y, \phi ) \longmapsto (L(X), K(Y), \alpha ^{-1}_ Y \circ M(\phi ) \circ \beta ^{-1}_ X)
on objects and
(a, b) \longmapsto (L(a), K(b))
on morphisms.
\square
Lemma 4.31.7. Assumptions as in Lemma 4.31.6.
If K and L are faithful then the morphism \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \to \mathcal{A} \times _\mathcal {C} \mathcal{B} is faithful.
If K and L are fully faithful and M is faithful then the morphism \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \to \mathcal{A} \times _\mathcal {C} \mathcal{B} is fully faithful.
If K and L are equivalences and M is fully faithful then the morphism \mathcal{X} \times _\mathcal {Z} \mathcal{Y} \to \mathcal{A} \times _\mathcal {C} \mathcal{B} is an equivalence.
Proof.
Let (X, Y, \phi ) and (X', Y', \phi ') be objects of \mathcal{X} \times _\mathcal {Z} \mathcal{Y}. Set Z = H(X) and identify it with I(Y) via \phi . Also, identify M(Z) with F(L(X)) via \alpha _ X and identify M(Z) with G(K(Y)) via \beta _ Y. Similarly for Z' = H(X') and M(Z'). The map on morphisms is the map
\xymatrix{ \mathop{\mathrm{Mor}}\nolimits _\mathcal {X}(X, X') \times _{\mathop{\mathrm{Mor}}\nolimits _\mathcal {Z}(Z, Z')} \mathop{\mathrm{Mor}}\nolimits _\mathcal {Y}(Y, Y') \ar[d] \\ \mathop{\mathrm{Mor}}\nolimits _\mathcal {A}(L(X), L(X')) \times _{\mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(M(Z), M(Z'))} \mathop{\mathrm{Mor}}\nolimits _\mathcal {B}(K(Y), K(Y')) }
Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is fully faithful, then any object (A, B, \phi ) is in the essential image for the following reasons: Pick X, Y such that L(X) \cong A and K(Y) \cong B. Then the fully faithfulness of M guarantees that we can find an isomorphism H(X) \cong I(Y). Some details omitted.
\square
Lemma 4.31.8. Let
\xymatrix{ \mathcal{A} \ar[rd] & & \mathcal{C} \ar[ld] \ar[rd] & & \mathcal{E} \ar[ld] \\ & \mathcal{B} & & \mathcal{D} }
be a diagram of categories and functors. Then there is a canonical isomorphism
(\mathcal{A} \times _\mathcal {B} \mathcal{C}) \times _\mathcal {D} \mathcal{E} \cong \mathcal{A} \times _\mathcal {B} (\mathcal{C} \times _\mathcal {D} \mathcal{E})
of categories.
Proof.
Just use the functor
((A, C, \phi ), E, \psi ) \longmapsto (A, (C, E, \psi ), \phi )
if you know what I mean.
\square
Henceforth we do not write the parentheses when dealing with fibre products of more than 2 categories.
Lemma 4.31.9. Let
\xymatrix{ \mathcal{A} \ar[rd] & & \mathcal{C} \ar[ld] \ar[rd] & & \mathcal{E} \ar[ld] \\ & \mathcal{B} \ar[rd]_ F & & \mathcal{D} \ar[ld]^ G \\ & & \mathcal{F} & }
be a commutative diagram of categories and functors. Then there is a canonical functor
\text{pr}_{02} : \mathcal{A} \times _\mathcal {B} \mathcal{C} \times _\mathcal {D} \mathcal{E} \longrightarrow \mathcal{A} \times _\mathcal {F} \mathcal{E}
of categories.
Proof.
If we write \mathcal{A} \times _\mathcal {B} \mathcal{C} \times _\mathcal {D} \mathcal{E} as (\mathcal{A} \times _\mathcal {B} \mathcal{C}) \times _\mathcal {D} \mathcal{E} then we can just use the functor
((A, C, \phi ), E, \psi ) \longmapsto (A, E, G(\psi ) \circ F(\phi ))
if you know what I mean.
\square
Lemma 4.31.10. Let
\mathcal{A} \to \mathcal{B} \leftarrow \mathcal{C} \leftarrow \mathcal{D}
be a diagram of categories and functors. Then there is a canonical isomorphism
\mathcal{A} \times _\mathcal {B} \mathcal{C} \times _\mathcal {C} \mathcal{D} \cong \mathcal{A} \times _\mathcal {B} \mathcal{D}
of categories.
Proof.
Omitted.
\square
We claim that this means you can work with these 2-fibre products just like with ordinary fibre products. Here are some further lemmas that actually come up later.
Lemma 4.31.11. Let
\xymatrix{ \mathcal{C}_3 \ar[r] \ar[d] & \mathcal{S} \ar[d]^\Delta \\ \mathcal{C}_1 \times \mathcal{C}_2 \ar[r]^{G_1 \times G_2} & \mathcal{S} \times \mathcal{S} }
be a 2-fibre product of categories. Then there is a canonical isomorphism \mathcal{C}_3 \cong \mathcal{C}_1 \times _{G_1, \mathcal{S}, G_2} \mathcal{C}_2.
Proof.
We may assume that \mathcal{C}_3 is the category (\mathcal{C}_1 \times \mathcal{C}_2)\times _{\mathcal{S} \times \mathcal{S}} \mathcal{S} constructed in Example 4.31.3. Hence an object is a triple ((X_1, X_2), S, \phi ) where \phi = (\phi _1, \phi _2) : (G_1(X_1), G_2(X_2)) \to (S, S) is an isomorphism. Thus we can associate to this the triple (X_1, X_2, \phi _2^{-1} \circ \phi _1). Conversely, if (X_1, X_2, \psi ) is an object of \mathcal{C}_1 \times _{G_1, \mathcal{S}, G_2} \mathcal{C}_2, then we can associate to this the triple ((X_1, X_2), G_2(X_2), (\psi , \text{id}_{G_2(X_2)})). We claim these constructions given mutually inverse functors. We omit describing how to deal with morphisms and showing they are mutually inverse.
\square
Lemma 4.31.12. Let
\xymatrix{ \mathcal{C}' \ar[r] \ar[d] & \mathcal{S} \ar[d]^\Delta \\ \mathcal{C} \ar[r]^{G_1 \times G_2} & \mathcal{S} \times \mathcal{S} }
be a 2-fibre product of categories. Then there is a canonical isomorphism
\mathcal{C}' \cong (\mathcal{C} \times _{G_1, \mathcal{S}, G_2} \mathcal{C}) \times _{(p, q), \mathcal{C} \times \mathcal{C}, \Delta } \mathcal{C}.
Proof.
An object of the right hand side is given by ((C_1, C_2, \phi ), C_3, \psi ) where \phi : G_1(C_1) \to G_2(C_2) is an isomorphism and \psi = (\psi _1, \psi _2) : (C_1, C_2) \to (C_3, C_3) is an isomorphism. Hence we can associate to this the triple (C_3, G_1(C_1), (G_1(\psi _1^{-1}), \phi ^{-1} \circ G_2(\psi _2^{-1}))) which is an object of \mathcal{C}'. Details omitted.
\square
Lemma 4.31.13. Let \mathcal{A} \to \mathcal{C}, \mathcal{B} \to \mathcal{C} and \mathcal{C} \to \mathcal{D} be functors between categories. Then the diagram
\xymatrix{ \mathcal{A} \times _\mathcal {C} \mathcal{B} \ar[d] \ar[r] & \mathcal{A} \times _\mathcal {D} \mathcal{B} \ar[d] \\ \mathcal{C} \ar[r]^-{\Delta _{\mathcal{C}/\mathcal{D}}} \ar[r] & \mathcal{C} \times _\mathcal {D} \mathcal{C} }
is a 2-fibre product diagram.
Proof.
Omitted.
\square
Lemma 4.31.14. Let
\xymatrix{ \mathcal{U} \ar[d] \ar[r] & \mathcal{V} \ar[d] \\ \mathcal{X} \ar[r] & \mathcal{Y} }
be a 2-fibre product of categories. Then the diagram
\xymatrix{ \mathcal{U} \ar[d] \ar[r] & \mathcal{U} \times _\mathcal {V} \mathcal{U} \ar[d] \\ \mathcal{X} \ar[r] & \mathcal{X} \times _\mathcal {Y} \mathcal{X} }
is 2-cartesian.
Proof.
This is a purely 2-category theoretic statement, valid in any (2, 1)-category with 2-fibre products. Explicitly, it follows from the following chain of equivalences:
\begin{align*} \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} (\mathcal{U} \times _\mathcal {V} \mathcal{U}) & = \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} ((\mathcal{X} \times _\mathcal {Y} \mathcal{V}) \times _\mathcal {V} (\mathcal{X} \times _\mathcal {Y} \mathcal{V})) \\ & = \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} (\mathcal{X} \times _\mathcal {Y} \mathcal{X} \times _\mathcal {Y} \mathcal{V}) \\ & = \mathcal{X} \times _\mathcal {Y} \mathcal{V} = \mathcal{U} \end{align*}
see Lemmas 4.31.8 and 4.31.10.
\square
Comments (6)
Comment #94 by David Zureick-Brown on
Comment #5394 by Manuel Hoff on
Comment #5627 by Johan on
Comment #5915 by Santai Qu on
Comment #6780 by Mark on
Comment #6936 by Johan on