Definition 4.31.2. Let \mathcal{C} be a (2, 1)-category. Let x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, z) and g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(y, z). A 2-fibre product of f and g is a final object in the category of 2-commutative diagrams described above. If a 2-fibre product exists we will denote it x \times _ z y\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), and denote the required morphisms p\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ z y, x) and q\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ z y, y) making the diagram
2-commute and we will denote the given invertible 2-morphism exhibiting this by \psi : f \circ p \to g \circ q.
Comments (0)
There are also: