Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 4.31.14. Let

\[ \xymatrix{ \mathcal{U} \ar[d] \ar[r] & \mathcal{V} \ar[d] \\ \mathcal{X} \ar[r] & \mathcal{Y} } \]

be a $2$-fibre product of categories. Then the diagram

\[ \xymatrix{ \mathcal{U} \ar[d] \ar[r] & \mathcal{U} \times _\mathcal {V} \mathcal{U} \ar[d] \\ \mathcal{X} \ar[r] & \mathcal{X} \times _\mathcal {Y} \mathcal{X} } \]

is $2$-cartesian.

Proof. This is a purely $2$-category theoretic statement, valid in any $(2, 1)$-category with $2$-fibre products. Explicitly, it follows from the following chain of equivalences:

\begin{align*} \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} (\mathcal{U} \times _\mathcal {V} \mathcal{U}) & = \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} ((\mathcal{X} \times _\mathcal {Y} \mathcal{V}) \times _\mathcal {V} (\mathcal{X} \times _\mathcal {Y} \mathcal{V})) \\ & = \mathcal{X} \times _{(\mathcal{X} \times _\mathcal {Y} \mathcal{X})} (\mathcal{X} \times _\mathcal {Y} \mathcal{X} \times _\mathcal {Y} \mathcal{V}) \\ & = \mathcal{X} \times _\mathcal {Y} \mathcal{V} = \mathcal{U} \end{align*}

see Lemmas 4.31.8 and 4.31.10. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 4.31: 2-fibre products

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.