Definition 4.32.2. Let $\mathcal{C}$ be a category. Let $p : \mathcal{S} \to \mathcal{C}$ be a category over $\mathcal{C}$.

1. The fibre category over an object $U\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is the category $\mathcal{S}_ U$ with objects

$\mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U) = \{ x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}) : p(x) = U\}$

and morphisms

$\mathop{\mathrm{Mor}}\nolimits _{\mathcal{S}_ U}(x, y) = \{ \phi \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {S}(x, y) : p(\phi ) = \text{id}_ U\} .$
2. A lift of an object $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ is an object $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$ such that $p(x) = U$, i.e., $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$. We will also sometime say that $x$ lies over $U$.

3. Similarly, a lift of a morphism $f : V \to U$ in $\mathcal{C}$ is a morphism $\phi : y \to x$ in $\mathcal{S}$ such that $p(\phi ) = f$. We sometimes say that $\phi$ lies over $f$.

There are also:

• 2 comment(s) on Section 4.32: Categories over categories

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).