The Stacks project

Definition 4.29.1. A (strict) $2$-category $\mathcal{C}$ consists of the following data

  1. A set of objects $\mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

  2. For each pair $x, y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ a category $\mathop{Mor}\nolimits _\mathcal {C}(x, y)$. The objects of $\mathop{Mor}\nolimits _\mathcal {C}(x, y)$ will be called $1$-morphisms and denoted $F : x \to y$. The morphisms between these $1$-morphisms will be called $2$-morphisms and denoted $t : F' \to F$. The composition of $2$-morphisms in $\mathop{Mor}\nolimits _\mathcal {C}(x, y)$ will be called vertical composition and will be denoted $t \circ t'$ for $t : F' \to F$ and $t' : F'' \to F'$.

  3. For each triple $x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ a functor

    \[ (\circ , \star ) : \mathop{Mor}\nolimits _\mathcal {C}(y, z) \times \mathop{Mor}\nolimits _\mathcal {C}(x, y) \longrightarrow \mathop{Mor}\nolimits _\mathcal {C}(x, z). \]

    The image of the pair of $1$-morphisms $(F, G)$ on the left hand side will be called the composition of $F$ and $G$, and denoted $F\circ G$. The image of the pair of $2$-morphisms $(t, s)$ will be called the horizontal composition and denoted $t \star s$.

These data are to satisfy the following rules:

  1. The set of objects together with the set of $1$-morphisms endowed with composition of $1$-morphisms forms a category.

  2. Horizontal composition of $2$-morphisms is associative.

  3. The identity $2$-morphism $\text{id}_{\text{id}_ x}$ of the identity $1$-morphism $\text{id}_ x$ is a unit for horizontal composition.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 003H. Beware of the difference between the letter 'O' and the digit '0'.