Lemma 4.27.5. Let $\mathcal{C}$ be a category and let $S$ be a left multiplicative system of morphisms of $\mathcal{C}$. Given any finite collection $g_ i : X_ i \to Y$ of morphisms of $S^{-1}\mathcal{C}$ (indexed by $i$), we can find an element $s : Y \to Y'$ of $S$ and a family of morphisms $f_ i : X_ i \to Y'$ of $\mathcal{C}$ such that each $g_ i$ is the equivalence class of the pair $(f_ i : X_ i \to Y', s : Y \to Y')$.

**Proof.**
For each $i$ choose a representative $(X_ i \to Y_ i, s_ i : Y \to Y_ i)$ of $g_ i$. The lemma follows if we can find a morphism $s : Y \to Y'$ in $S$ such that for each $i$ there is a morphism $a_ i : Y_ i \to Y'$ with $a_ i \circ s_ i = s$. If we have two indices $i = 1, 2$, then we can do this by completing the square

with $t_2 \in S$ as is possible by Definition 4.27.1. Then $s = t_2 \circ s_2 \in S$ works. If we have $n > 2$ morphisms, then we use the above trick to reduce to the case of $n - 1$ morphisms, and we win by induction. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #324 by arp on

There are also: