The Stacks project

4.44 Categories of dotted arrows

We discuss certain “categories of dotted arrows” in $(2,1)$-categories. These will appear when formulating various lifting criteria for algebraic stacks, see for example Morphisms of Stacks, Section 101.39 and More on Morphisms of Stacks, Section 106.8.

Definition 4.44.1. Let $\mathcal{C}$ be a $(2,1)$-category. Consider a $2$-commutative solid diagram

4.44.1.1
\begin{equation} \label{categories-equation-dotted-arrows} \vcenter { \xymatrix{ S \ar[r]_-x \ar[d]_ j & X \ar[d]^ f \\ T \ar[r]^-y \ar@{..>}[ru] & Y } } \end{equation}

in $\mathcal{C}$. Fix a $2$-isomorphism

\[ \gamma : y \circ j \rightarrow f \circ x \]

witnessing the $2$-commutativity of the diagram. Given (4.44.1.1) and $\gamma $, a dotted arrow is a triple $(a, \alpha , \beta )$ consisting of a morphism $a \colon T \to X$ and and $2$-isomorphisms $\alpha : a \circ j \to x$, $\beta : y \to f \circ a$ such that $\gamma = (\text{id}_ f \star \alpha ) \circ (\beta \star \text{id}_ j)$, in other words such that

\[ \xymatrix{ & f \circ a \circ j \ar[rd]^{\text{id}_ f \star \alpha } \\ y \circ j \ar[ru]^{\beta \star \text{id}_ j} \ar[rr]^\gamma & & f \circ x } \]

is commutative. A morphism of dotted arrows $(a, \alpha , \beta ) \to (a', \alpha ', \beta ')$ is a $2$-arrow $\theta : a \to a'$ such that $\alpha = \alpha ' \circ (\theta \star \text{id}_ j)$ and $\beta ' = (\text{id}_ f \star \theta ) \circ \beta $.

In the situation of Definition 4.44.1, there is an associated category of dotted arrows. This category is a groupoid. It may depend on $\gamma $ in general. The next two lemmas say that categories of dotted arrows are well-behaved with respect to base change and composition for $f$.

Lemma 4.44.2. Let $\mathcal{C}$ be a $(2,1)$-category. Assume given a $2$-commutative diagram

\[ \xymatrix{ S \ar[r]_-{x'} \ar[d]_ j & X' \ar[d]^ p \ar[r]_ q & X \ar[d]^ f \\ T \ar[r]^-{y'} & Y' \ar[r]^ g & Y } \]

in $\mathcal{C}$, where the right square is $2$-cartesian with respect to a $2$-isomorphism $\phi \colon g \circ p \to f \circ q$. Choose a $2$-arrow $\gamma ' : y' \circ j \to p \circ x'$. Set $x = q \circ x'$, $y = g \circ y'$ and let $\gamma : y \circ j \to f \circ x$ be the $2$-isomorphism $\gamma = (\phi \star \text{id}_{x'}) \circ (\text{id}_ g \star \gamma ')$. Then the category $\mathcal{D}'$ of dotted arrows for the left square and $\gamma '$ is equivalent to the category $\mathcal{D}$ of dotted arrows for the outer rectangle and $\gamma $.

Proof. There is a functor $\mathcal{D}' \to \mathcal{D}$ which is $(a, \alpha , \beta ) \mapsto (q \circ a, \text{id}_ q \star \alpha , (\phi \star \text{id}_ a) \circ (\text{id}_ g \star \beta ))$ on objects and $\theta \mapsto \text{id}_ q \star \theta $ on arrows. Checking that this functor $\mathcal{D}' \to \mathcal{D}$ is an equivalence follows formally from the universal property for $2$-fibre products as in Section 4.31. Details omitted. $\square$

Lemma 4.44.3. Let $\mathcal{C}$ be a $(2,1)$-category. Assume given a solid $2$-commutative diagram

\[ \xymatrix{ S \ar[r]_-x \ar[dd]_ j & X \ar[d]^ f \\ & Y \ar[d]^ g \\ T \ar[r]^-z \ar@{..>}[ruu] & Z } \]

in $\mathcal{C}$. Choose a $2$-isomorphism $\gamma \colon z \circ j \to g \circ f \circ x$. Let $\mathcal{D}$ be the category of dotted arrows for the outer rectangle and $\gamma $. Let $\mathcal{D}'$ be the category of dotted arrows for the solid square

\[ \xymatrix{ S \ar[r]_-{f \circ x} \ar[d]_ j & Y \ar[d]^ g \\ T \ar[r]^-z \ar@{..>}[ru] & Z } \]

and $\gamma $. Then $\mathcal{D}$ is equivalent to a category $\mathcal{D}''$ which has the following property: there is a functor $\mathcal{D}'' \to \mathcal{D}'$ which turns $\mathcal{D}''$ into a category fibred in groupoids over $\mathcal{D}'$ and whose fibre categories are isomorphic to categories of dotted arrows for certain solid squares of the form

\[ \xymatrix{ S \ar[r]_-x \ar[d]_ j & X \ar[d]^ f \\ T \ar[r]^-y \ar@{..>}[ru] & Y } \]

and some choices of $2$-isomorphism $y \circ j \to f \circ x$.

Proof. Construct the category $\mathcal{D}''$ whose objects are tuples $(a,\alpha ,\beta ,b,\eta )$ where $(a,\alpha ,\beta )$ is an object of $\mathcal{D}$ and $b \colon T \rightarrow Y$ is a $1$-morphism and $\eta \colon b \rightarrow f \circ a$ is a $2$-isomorphism. Morphisms $(a,\alpha ,\beta ,b,\eta ) \rightarrow (a',\alpha ',\beta ',b',\eta ')$ in $\mathcal{D}''$ are pairs $(\theta _1,\theta _2)$, where $\theta _1 \colon a \rightarrow a'$ defines an arrow $(a, \alpha , \beta ) \rightarrow (a', \alpha ', \beta ')$ in $\mathcal{D}$ and $\theta _2 \colon b \rightarrow b'$ is a $2$-isomorphism with the compatibility condition $\eta ' \circ \theta _2 = (\text{id}_ f \star \theta _1) \circ \eta $.

There is a functor $\mathcal{D}'' \rightarrow \mathcal{D}'$ which is $(a, \alpha , \beta , b, \eta ) \mapsto (b, (\text{id}_ f \star \alpha ) \circ (\eta \star \text{id}_ j), (\text{id}_ g \star \eta ^{-1}) \circ \beta )$ on objects and $(\theta _1,\theta _2) \mapsto \theta _2$ on arrows. Then $\mathcal{D}'' \rightarrow \mathcal{D}'$ is fibred in groupoids.

If $(y, \delta , \epsilon )$ is an object of $\mathcal{D}'$, write $\mathcal{D}_{y,\delta }$ for the category of dotted arrows for the last displayed diagram with $y \circ j \rightarrow f \circ x$ given by $\delta $. There is a functor $\mathcal{D}_{y,\delta } \rightarrow \mathcal{D}''$ given by $(a, \alpha , \eta ) \mapsto (a, \alpha , (\text{id}_ g \star \eta ) \circ \epsilon , y, \eta )$ on objects and $\theta \mapsto (\theta , \text{id}_ y)$ on arrows. This exhibits an isomorphism from $\mathcal{D}_{y,\delta }$ to the fibre category of $\mathcal{D}'' \rightarrow \mathcal{D}'$ over $(y,\delta ,\epsilon )$.

There is also a functor $\mathcal{D} \rightarrow \mathcal{D}''$ which is $(a,\alpha ,\beta ) \mapsto (a,\alpha ,\beta ,f \circ a, \text{id}_{f \circ a})$ on objects and $\theta \mapsto (\theta , \text{id}_ f \star \theta )$ on arrows. This functor is fully faithful and essentially surjective, hence an equivalence. Details omitted. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H17. Beware of the difference between the letter 'O' and the digit '0'.