Lemma 4.16.3. Let $\mathcal{C}$ be a category. Let $X$ be an object of $\mathcal{C}$. Let $M : \mathcal{I} \to X/\mathcal{C}$ be a diagram in the category of objects under $X$. If the index category $\mathcal{I}$ is connected and the colimit of $M$ exists in $X/\mathcal{C}$, then the colimit of the composition $\mathcal{I} \to X/\mathcal{C} \to \mathcal{C}$ exists and is the same.
Proof. Omitted. Hint: This lemma is dual to Lemma 4.16.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: