Loading web-font TeX/Caligraphic/Regular

The Stacks project

Lemma 4.16.2. Let \mathcal{C} be a category. Let X be an object of \mathcal{C}. Let M : \mathcal{I} \to \mathcal{C}/X be a diagram in the category of objects over X. If the index category \mathcal{I} is connected and the limit of M exists in \mathcal{C}/X, then the limit of the composition \mathcal{I} \to \mathcal{C}/X \to \mathcal{C} exists and is the same.

Proof. Let L \to X be an object representing the limit in \mathcal{C}/X. Consider the functor

W \longmapsto \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(W, M_ i).

Let (\varphi _ i) be an element of the set on the right. Since each M_ i comes equipped with a morphism s_ i : M_ i \to X we get morphisms f_ i = s_ i \circ \varphi _ i : W \to X. But as \mathcal{I} is connected we see that all f_ i are equal. Since \mathcal{I} is nonempty there is at least one f_ i. Hence this common value W \to X defines the structure of an object of W in \mathcal{C}/X and (\varphi _ i) defines an element of \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}/X}(W, M_ i). Thus we obtain a unique morphism \phi : W \to L such that \varphi _ i is the composition of \phi with L \to M_ i as desired. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 4.16: Connected limits

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.