Definition 4.6.1. Let $x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y)$ and $g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, y)$. A fibre product of $f$ and $g$ is an object $x \times _ y z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ together with morphisms $p \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, x)$ and $q \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, z)$ making the diagram
commute, and such that the following universal property holds: for any $w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and morphisms $\alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x)$ and $\beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, z)$ with $f \circ \alpha = g \circ \beta $ there is a unique $\gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times _ y z)$ making the diagram
commute.
Comments (2)
Comment #155 by Fred Rohrer on
Comment #159 by Johan on
There are also: