Definition 4.6.1. Let $x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y)$ and $g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, y)$. A fibre product of $f$ and $g$ is an object $x \times _ y z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ together with morphisms $p \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, x)$ and $q \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, z)$ making the diagram

$\xymatrix{ x \times _ y z \ar[r]_ q \ar[d]_ p & z \ar[d]^ g \\ x \ar[r]^ f & y }$

commute, and such that the following universal property holds: for any $w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and morphisms $\alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x)$ and $\beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, z)$ with $f \circ \alpha = g \circ \beta$ there is a unique $\gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times _ y z)$ making the diagram

$\xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\gamma \ar[rrdd]_\alpha & & \\ & & x \times _ y z \ar[d]^ p \ar[r]_ q & z \ar[d]^ g \\ & & x \ar[r]^ f & y }$

commute.

Comment #155 by on

In the lower right corner of the second diagram, replace $z$ by $y$.

There are also:

• 4 comment(s) on Section 4.6: Fibre products

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).