Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Definition 4.6.1. Let $x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y)$ and $g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, y)$. A fibre product of $f$ and $g$ is an object $x \times _ y z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ together with morphisms $p \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, x)$ and $q \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, z)$ making the diagram

\[ \xymatrix{ x \times _ y z \ar[r]_ q \ar[d]_ p & z \ar[d]^ g \\ x \ar[r]^ f & y } \]

commute, and such that the following universal property holds: for any $w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and morphisms $\alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x)$ and $\beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, z)$ with $f \circ \alpha = g \circ \beta $ there is a unique $\gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times _ y z)$ making the diagram

\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\gamma \ar[rrdd]_\alpha & & \\ & & x \times _ y z \ar[d]^ p \ar[r]_ q & z \ar[d]^ g \\ & & x \ar[r]^ f & y } \]

commute.


Comments (2)

Comment #155 by on

In the lower right corner of the second diagram, replace by .

There are also:

  • 4 comment(s) on Section 4.6: Fibre products

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.