The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

4.35 Presheaves of categories

In this section we compare the notion of fibred categories with the closely related notion of a “presheaf of categories”. The basic construction is explained in the following example.

Example 4.35.1. Let $\mathcal{C}$ be a category. Suppose that $F : \mathcal{C}^{opp} \to \textit{Cat}$ is a functor to the $2$-category of categories, see Definition 4.28.5. For $f : V \to U$ in $\mathcal{C}$ we will suggestively write $F(f) = f^\ast $ for the functor from $F(U)$ to $F(V)$. From this we can construct a fibred category $\mathcal{S}_ F$ over $\mathcal{C}$ as follows. Define

\[ \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ F) = \{ (U, x) \mid U\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), x\in \mathop{\mathrm{Ob}}\nolimits (F(U))\} . \]

For $(U, x), (V, y) \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ F)$ we define

\begin{align*} \mathop{Mor}\nolimits _{\mathcal{S}_ F}((V, y), (U, x)) & = \{ (f, \phi ) \mid f \in \mathop{Mor}\nolimits _\mathcal {C}(V, U), \phi \in \mathop{Mor}\nolimits _{F(V)}(y, f^\ast x)\} \\ & = \coprod \nolimits _{f \in \mathop{Mor}\nolimits _\mathcal {C}(V, U)} \mathop{Mor}\nolimits _{F(V)}(y, f^\ast x) \end{align*}

In order to define composition we use that $g^\ast \circ f^\ast = (f \circ g)^\ast $ for a pair of composable morphisms of $\mathcal{C}$ (by definition of a functor into a $2$-category). Namely, we define the composition of $\psi : z \to g^\ast y$ and $ \phi : y \to f^\ast x$ to be $ g^\ast (\phi ) \circ \psi $. The functor $p_ F : \mathcal{S}_ F \to \mathcal{C}$ is given by the rule $(U, x) \mapsto U$. Let us check that this is indeed a fibred category. Given $f: V \to U$ in $\mathcal{C}$ and $(U, x)$ a lift of $U$, then we claim $(f, \text{id}_{f^\ast x}): (V, {f^\ast x}) \to (U, x)$ is a strongly cartesian lift of $f$. We have to show a $h$ in the diagram on the left determines $(h, \nu )$ on the right:

\[ \xymatrix{ V \ar[r]^ f & U & (V, f^*x) \ar[r]^{(f, \text{id}_{f^*x})} & (U, x) \\ W \ar@{-->}[u]^ h \ar[ru]_ g & & (W, z) \ar@{-->}[u]^{(h, \nu )} \ar[ru]_{(g, \psi )} & } \]

Just take $\nu = \psi $ which works because $f \circ h = g$ and hence $g^*x = h^*f^*x$. Moreover, this is the only lift making the diagram (on the right) commute.

Definition 4.35.2. Let $\mathcal{C}$ be a category. Suppose that $F : \mathcal{C}^{opp} \to \textit{Cat}$ is a functor to the $2$-category of categories. We will write $p_ F : \mathcal{S}_ F \to \mathcal{C}$ for the fibred category constructed in Example 4.35.1. A split fibred category is a fibred category isomorphic (!) over $\mathcal{C}$ to one of these categories $\mathcal{S}_ F$.

Lemma 4.35.3. Let $\mathcal{C}$ be a category. Let $\mathcal{S}$ be a fibred category over $\mathcal{C}$. Then $\mathcal{S}$ is split if and only if for some choice of pullbacks (see Definition 4.32.6) the pullback functors $(f \circ g)^*$ and $g^* \circ f^*$ are equal.

Proof. This is immediate from the definitions. $\square$

Lemma 4.35.4. Let $ p : \mathcal{S} \to \mathcal{C}$ be a fibred category. There exists a contravariant functor $F : \mathcal{C} \to \textit{Cat}$ such that $\mathcal{S}$ is equivalent to $\mathcal{S}_ F$ in the $2$-category of fibred categories over $\mathcal{C}$. In other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 4.32.6). By Lemma 4.32.7 we get pullback functors $f^*$ for every morphism $f$ of $\mathcal{C}$.

We construct a new category $\mathcal{S}'$ as follows. The objects of $\mathcal{S}'$ are pairs $(x, f)$ consisting of a morphism $f : V \to U$ of $\mathcal{C}$ and an object $x$ of $\mathcal{S}$ over $U$, i.e., $x\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U)$. The functor $p' : \mathcal{S}' \to \mathcal{C}$ will map the pair $(x, f)$ to the source of the morphism $f$, in other words $p'(x, f : V\to U) = V$. A morphism $\varphi : (x_1, f_1: V_1 \to U_1) \to (x_2, f_2 : V_2 \to U_2)$ is given by a pair $(\varphi , g)$ consisting of a morphism $g : V_1 \to V_2$ and a morphism $\varphi : f_1^\ast x_1 \to f_2^\ast x_2$ with $p(\varphi ) = g$. It is no problem to define the composition law: $(\varphi , g) \circ (\psi , h) = (\varphi \circ \psi , g\circ h)$ for any pair of composable morphisms. There is a natural functor $\mathcal{S} \to \mathcal{S}'$ which simply maps $x$ over $U$ to the pair $(x, \text{id}_ U)$.

At this point we need to check that $p'$ makes $\mathcal{S}'$ into a fibred category over $\mathcal{C}$, and we need to check that $\mathcal{S} \to \mathcal{S}'$ is an equivalence of categories over $\mathcal{C}$ which maps strongly cartesian morphisms to strongly cartesian morphisms. We omit the verifications.

Finally, we can define pullback functors on $\mathcal{S}'$ by setting $g^\ast (x, f) = (x, f \circ g)$ on objects if $g : V' \to V$ and $f : V \to U$. On morphisms $(\varphi , \text{id}_ V) : (x_1, f_1) \to (x_2, f_2)$ between morphisms in $\mathcal{S}'_ V$ we set $g^\ast (\varphi , \text{id}_ V) = (g^\ast \varphi , \text{id}_{V'})$ where we use the unique identifications $g^\ast f_ i^\ast x_ i = (f_ i \circ g)^\ast x_ i$ from Lemma 4.32.7 to think of $g^\ast \varphi $ as a morphism from $(f_1 \circ g)^\ast x_1$ to $(f_2 \circ g)^\ast x_2$. Clearly, these pullback functors $g^\ast $ have the property that $g_1^\ast \circ g_2^\ast = (g_2\circ g_1)^\ast $, in other words $\mathcal{S}'$ is split as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02XU. Beware of the difference between the letter 'O' and the digit '0'.