Definition 4.17.1. Let $H : \mathcal{I} \to \mathcal{J}$ be a functor between categories. We say *$\mathcal{I}$ is cofinal in $\mathcal{J}$* or that $H$ is *cofinal* if

for all $y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{J})$ there exists a $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and a morphism $y \to H(x)$, and

given $y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{J})$, $x, x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and morphisms $y \to H(x)$ and $y \to H(x')$ there exists a sequence of morphisms

\[ x = x_0 \leftarrow x_1 \rightarrow x_2 \leftarrow x_3 \rightarrow \ldots \rightarrow x_{2n} = x' \]in $\mathcal{I}$ and morphisms $y \to H(x_ i)$ in $\mathcal{J}$ such that the diagrams

\[ \xymatrix{ & y \ar[ld] \ar[d] \ar[rd] \\ H(x_{2k}) & H(x_{2k + 1}) \ar[l] \ar[r] & H(x_{2k + 2}) } \]commute for $k = 0, \ldots , n - 1$.

## Comments (0)