Definition 4.17.1. Let H : \mathcal{I} \to \mathcal{J} be a functor between categories. We say \mathcal{I} is cofinal in \mathcal{J} or that H is cofinal if
for all y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{J}) there exist an x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}) and a morphism y \to H(x), and
given y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{J}), x, x' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I}) and morphisms y \to H(x) and y \to H(x') there exist a sequence of morphisms
x = x_0 \leftarrow x_1 \rightarrow x_2 \leftarrow x_3 \rightarrow \ldots \rightarrow x_{2n} = x'in \mathcal{I} and morphisms y \to H(x_ i) in \mathcal{J} with y \to H(x_0) and y \to H(x_{2n}) the given morphisms such that the diagrams
\xymatrix{ & y \ar[ld] \ar[d] \ar[rd] \\ H(x_{2k}) & H(x_{2k + 1}) \ar[l] \ar[r] & H(x_{2k + 2}) }commute for k = 0, \ldots , n - 1.
In other words, fixing an object y of \mathcal{J} consider the set S of pairs (x, b) where x is an object of \mathcal{I} and b : y \to H(x) is a morphism. Consider the equivalence relation on S generated by (x, b) \sim (x', b') if there exists a morphism a : x \to x' with b' = H(a) \circ b. Then S should consist of exactly one equivalence class.
Comments (6)
Comment #6492 by George on
Comment #6493 by Johan on
Comment #6495 by Laurent Moret-Bailly on
Comment #6497 by Johan on
Comment #10154 by Doug Liu on
Comment #10634 by Stacks Project on
There are also: