Lemma 4.13.3. Let $\mathcal{C}$ be a category, and let $f : X \to Y$ be a morphism of $\mathcal{C}$. Then
$f$ is a monomorphism if and only if $X$ is the fibre product $X \times _ Y X$, and
$f$ is an epimorphism if and only if $Y$ is the pushout $Y \amalg _ X Y$.
Comments (0)