Definition 4.9.1. Let x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}), f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(y, x) and g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(y, z). A pushout of f and g is an object x\amalg _ y z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) together with morphisms p\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x, x\amalg _ y z) and q\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, x\amalg _ y z) making the diagram
commute, and such that the following universal property holds: For any w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and morphisms \alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x, w) and \beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(z, w) with \alpha \circ f = \beta \circ g there is a unique \gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x\amalg _ y z, w) making the diagram
commute.
Comments (0)
There are also: