The Stacks project

Lemma 4.27.9. Let $\mathcal{C}$ be a category and let $S$ be a left multiplicative system of morphisms of $\mathcal{C}$. The localization functor $Q : \mathcal{C} \to S^{-1}\mathcal{C}$ commutes with finite colimits.

Proof. Let $\mathcal{I}$ be a finite category and let $\mathcal{I} \to \mathcal{C}$, $i \mapsto X_ i$ be a functor whose colimit exists. Then using (4.27.7.1), the fact that $Y/S$ is filtered, and Lemma 4.19.2 we have

\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{S^{-1}\mathcal{C}}(Q(\mathop{\mathrm{colim}}\nolimits X_ i), Q(Y)) & = \mathop{\mathrm{colim}}\nolimits _{(s : Y \to Y') \in Y/S} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(\mathop{\mathrm{colim}}\nolimits X_ i, Y') \\ & = \mathop{\mathrm{colim}}\nolimits _{(s : Y \to Y') \in Y/S} \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X_ i, Y') \\ & = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{colim}}\nolimits _{(s : Y \to Y') \in Y/S} \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X_ i, Y') \\ & = \mathop{\mathrm{lim}}\nolimits _ i \mathop{\mathrm{Mor}}\nolimits _{S^{-1}\mathcal{C}}(Q(X_ i), Q(Y)) \end{align*}

and this isomorphism commutes with the projections from both sides to the set $\mathop{\mathrm{Mor}}\nolimits _{S^{-1}\mathcal{C}}(Q(X_ j), Q(Y))$ for each $j \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$. Thus, $Q(\mathop{\mathrm{colim}}\nolimits X_ i)$ satisfies the universal property for the colimit of the functor $i \mapsto Q(X_ i)$; hence, it is this colimit, as desired. $\square$


Comments (0)

There are also:

  • 20 comment(s) on Section 4.27: Localization in categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05Q2. Beware of the difference between the letter 'O' and the digit '0'.