Lemma 4.27.8. Let \mathcal{C} be a category and let S be a left multiplicative system of morphisms of \mathcal{C}.
The rules X \mapsto X and (f : X \to Y) \mapsto (f : X \to Y, \text{id}_ Y : Y \to Y) define a functor Q : \mathcal{C} \to S^{-1}\mathcal{C}.
For any s \in S the morphism Q(s) is an isomorphism in S^{-1}\mathcal{C}.
If G : \mathcal{C} \to \mathcal{D} is any functor such that G(s) is invertible for every s \in S, then there exists a unique functor H : S^{-1}\mathcal{C} \to \mathcal{D} such that H \circ Q = G.
Comments (1)
Comment #325 by arp on
There are also: