Lemma 4.26.8. Let $\mathcal{C}$ be a category and let $S$ be a left multiplicative system of morphisms of $\mathcal{C}$.

The rules $X \mapsto X$ and $(f : X \to Y) \mapsto (f : X \to Y, \text{id}_ Y : Y \to Y)$ define a functor $Q : \mathcal{C} \to S^{-1}\mathcal{C}$.

For any $s \in S$ the morphism $Q(s)$ is an isomorphism in $S^{-1}\mathcal{C}$.

If $G : \mathcal{C} \to \mathcal{D}$ is any functor such that $G(s)$ is invertible for every $s \in S$, then there exists a unique functor $H : S^{-1}\mathcal{C} \to \mathcal{D}$ such that $H \circ Q = G$.

## Comments (1)

Comment #325 by arp on

There are also: