Lemma 4.27.10. Let \mathcal{C} be a category. Let S be a left multiplicative system. If f : X \to Y, f' : X' \to Y' are two morphisms of \mathcal{C} and if
\xymatrix{ Q(X) \ar[d]_{Q(f)} \ar[r]_ a & Q(X') \ar[d]^{Q(f')} \\ Q(Y) \ar[r]^ b & Q(Y') }
is a commutative diagram in S^{-1}\mathcal{C}, then there exist a morphism f'' : X'' \to Y'' in \mathcal{C} and a commutative diagram
\xymatrix{ X \ar[d]_ f \ar[r]_ g & X'' \ar[d]^{f''} & X' \ar[d]^{f'} \ar[l]^ s \\ Y \ar[r]^ h & Y'' & Y' \ar[l]_ t }
in \mathcal{C} with s, t \in S and a = s^{-1}g, b = t^{-1}h.
Proof.
We choose maps and objects in the following way: First write a = s^{-1}g for some s : X' \to X'' in S and g : X \to X''. By LMS2 we can find t : Y' \to Y'' in S and f'' : X'' \to Y'' such that
\xymatrix{ X \ar[d]_ f \ar[r]_ g & X'' \ar[d]^{f''} & X' \ar[d]^{f'} \ar[l]^ s \\ Y & Y'' & Y' \ar[l]_ t }
commutes. Now in this diagram we are going to repeatedly change our choice of
X'' \xrightarrow {f''} Y'' \xleftarrow {t} Y'
by postcomposing both t and f'' by a morphism d : Y'' \to Y''' with the property that d \circ t \in S. According to Remark 4.27.7 we may after such a replacement assume that there exists a morphism h : Y \to Y'' such that b = t^{-1}h holds1. At this point we have everything as in the lemma except that we don't know that the left square of the diagram commutes. But the definition of composition in S^{-1} \mathcal{C} shows that b \circ Q\left(f\right) is the equivalence class of the pair (h \circ f : X \to Y'', t : Y' \to Y'') (since b is the equivalence class of the pair (h : Y \to Y'', t : Y' \to Y''), while Q\left(f\right) is the equivalence class of the pair (f : X \to Y, \text{id} : Y \to Y)), while Q\left(f'\right) \circ a is the equivalence class of the pair (f'' \circ g : X \to Y'', t : Y' \to Y'') (since a is the equivalence class of the pair (g : X \to X'', s : X' \to X''), while Q\left(f'\right) is the equivalence class of the pair (f' : X' \to Y', \text{id} : Y' \to Y')). Since we know that b \circ Q\left(f\right) = Q\left(f'\right) \circ a, we thus conclude that the equivalence classes of the pairs (h \circ f : X \to Y'', t : Y' \to Y'') and (f'' \circ g : X \to Y'', t : Y' \to Y'') are equal. Hence using Lemma 4.27.6 we can find a morphism d : Y'' \to Y''' such that d \circ t \in S and d \circ h \circ f = d \circ f'' \circ g. Hence we make one more replacement of the kind described above and we win.
\square
Comments (3)
Comment #326 by arp on
Comment #8336 by Elías Guisado on
Comment #8949 by Stacks project on
There are also: