The Stacks project

Lemma 4.27.21. Let $\mathcal{C}$ be a category and let $S$ be a multiplicative system. Denote $Q : \mathcal{C} \to S^{-1}\mathcal{C}$ the localization functor. The set

\[ \hat S = \{ f \in \text{Arrows}(\mathcal{C}) \mid Q(f) \text{ is an isomorphism}\} \]

is equal to

\[ S' = \{ f \in \text{Arrows}(\mathcal{C}) \mid \text{there exist }g, h\text{ such that }gf, fh \in S\} \]

and is the smallest saturated multiplicative system containing $S$. In particular, if $S$ is saturated, then $\hat S = S$.

Proof. It is clear that $S \subset S' \subset \hat S$ because elements of $S'$ map to morphisms in $S^{-1}\mathcal{C}$ which have both left and right inverses. Note that $S'$ satisfies MS4, and that $\hat S$ satisfies MS1. Next, we prove that $S' = \hat S$.

Let $f \in \hat S$. Let $s^{-1}g = ht^{-1}$ be the inverse morphism in $S^{-1}\mathcal{C}$. (We may use both left fractions and right fractions to describe morphisms in $S^{-1}\mathcal{C}$, see Lemma 4.27.19.) The relation $\text{id}_ X = s^{-1}gf$ in $S^{-1}\mathcal{C}$ means there exists a commutative diagram

\[ \xymatrix{ & X' \ar[d]^ u & \\ X \ar[ru]^{gf} \ar[r]^{f'} \ar[rd]_{\text{id}_ X} & X'' & X \ar[lu]_ s \ar[l]_{s'} \ar[ld]^{\text{id}_ X} \\ & X \ar[u]_ v & } \]

for some morphisms $f', u, v$ and $s' \in S$. Hence $ugf = s' \in S$. Similarly, using that $\text{id}_ Y = fht^{-1}$ one proves that $fhw \in S$ for some $w$. We conclude that $f \in S'$. Thus $S' = \hat S$. Provided we prove that $S' = \hat S$ is a multiplicative system it is now clear that this implies that $S' = \hat S$ is the smallest saturated system containing $S$.

Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma we have to show that LMS2, RMS2, LMS3, RMS3 hold for $\hat S$. Let us check that LMS2 holds for $\hat S$. Suppose we have a solid diagram

\[ \xymatrix{ X \ar[d]_ t \ar[r]_ g & Y \ar@{..>}[d]^ s \\ Z \ar@{..>}[r]^ f & W } \]

with $t \in \hat S$. Pick a morphism $a : Z \to Z'$ such that $at \in S$. Then we can use LMS2 for $S$ to find a commutative diagram

\[ \xymatrix{ X \ar[d]_ t \ar[r]_ g & Y \ar[dd]^ s \\ Z \ar[d]_ a \\ Z' \ar[r]^{f'} & W } \]

and setting $f = f' \circ a$ we win. The proof of RMS2 is dual to this. Finally, suppose given a pair of morphisms $f, g : X \to Y$ and $t \in \hat S$ with target $X$ such that $ft = gt$. Then we pick a morphism $b$ such that $tb \in S$. Then $ftb = gtb$ which implies by LMS3 for $S$ that there exists an $s \in S$ with source $Y$ such that $sf = sg$ as desired. The proof of RMS3 is dual to this. $\square$


Comments (0)

There are also:

  • 20 comment(s) on Section 4.27: Localization in categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05Q9. Beware of the difference between the letter 'O' and the digit '0'.