Lemma 4.24.2. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor between categories. If for each $y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ the functor $x \mapsto \mathop{Mor}\nolimits _\mathcal {D}(u(x), y)$ is representable, then $u$ has a right adjoint.

**Proof.**
For each $y$ choose an object $v(y)$ and an isomorphism $\mathop{Mor}\nolimits _\mathcal {C}(-, v(y)) \to \mathop{Mor}\nolimits _\mathcal {D}(u(-), y)$ of functors. By Yoneda's lemma (Lemma 4.3.5) for any morphism $g : y \to y'$ the transformation of functors

corresponds to a unique morphism $v(g) : v(y) \to v(y')$. We omit the verification that $v$ is a functor and that it is right adjoint to $u$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)