The Stacks project

Definition 4.39.3. Let $\mathcal{C}$ be a category. The $2$-category of categories fibred in setoids over $\mathcal{C}$ is the sub $2$-category of the category of categories fibred in groupoids over $\mathcal{C}$ (see Definition 4.35.6) defined as follows:

  1. Its objects will be categories $p : \mathcal{S} \to \mathcal{C}$ fibred in setoids.

  2. Its $1$-morphisms $(\mathcal{S}, p) \to (\mathcal{S}', p')$ will be functors $G : \mathcal{S} \to \mathcal{S}'$ such that $p' \circ G = p$ (since every morphism is strongly cartesian $G$ automatically preserves them).

  3. Its $2$-morphisms $t : G \to H$ for $G, H : (\mathcal{S}, p) \to (\mathcal{S}', p')$ will be morphisms of functors such that $p'(t_ x) = \text{id}_{p(x)}$ for all $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02Y1. Beware of the difference between the letter 'O' and the digit '0'.