Lemma 4.40.3. Let \mathcal{C} be a category. Let \mathcal{X}, \mathcal{Y} be categories fibred in groupoids over \mathcal{C}. Assume that \mathcal{X}, \mathcal{Y} are representable by objects X, Y of \mathcal{C}. Then
\mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{X}, \mathcal{Y}) \Big/ 2\text{-isomorphism} = \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, Y)
More precisely, given \phi : X \to Y there exists a 1-morphism f : \mathcal{X} \to \mathcal{Y} which induces \phi on isomorphism classes of objects and which is unique up to unique 2-isomorphism.
Proof.
By Example 4.38.7 we have \mathcal{C}/X = \mathcal{S}_{h_ X} and \mathcal{C}/Y = \mathcal{S}_{h_ Y}. By Lemma 4.39.6 we have
\mathop{\mathrm{Mor}}\nolimits _{\textit{Cat}/\mathcal{C}}(\mathcal{X}, \mathcal{Y}) \Big/ 2\text{-isomorphism} = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ X, h_ Y)
By the Yoneda Lemma 4.3.5 we have \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_ X, h_ Y) = \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(X, Y).
\square
Comments (0)