Definition 4.22.2. Let $\mathcal{C}$ be a category. A directed system $(M_ i, f_{ii'})$ is an *essentially constant system* if $M$ viewed as a functor $I \to \mathcal{C}$ defines an essentially constant diagram. A directed inverse system $(M_ i, f_{ii'})$ is an *essentially constant inverse system* if $M$ viewed as a functor $I^{opp} \to \mathcal{C}$ defines an essentially constant inverse diagram.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #6722 by Alejandro González Nevado on

Comment #6917 by Johan on

There are also: