Definition 4.2.20. Let \mathcal{A}, \mathcal{B} be categories. We define the product category \mathcal{A} \times \mathcal{B} to be the category with objects \mathop{\mathrm{Ob}}\nolimits (\mathcal{A} \times \mathcal{B}) = \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}) \times \mathop{\mathrm{Ob}}\nolimits (\mathcal{B}) and
\mathop{\mathrm{Mor}}\nolimits _{\mathcal{A} \times \mathcal{B}}((x, y), (x', y')) := \mathop{\mathrm{Mor}}\nolimits _\mathcal {A}(x, x')\times \mathop{\mathrm{Mor}}\nolimits _\mathcal {B}(y, y').
Composition is defined componentwise.
Comments (2)
Comment #145 by Fred Rohrer on
Comment #150 by Johan on
There are also: