Lemma 4.39.5. Let \mathcal{C} be a category. Let \mathcal{S} be a category over \mathcal{C}.
If \mathcal{S} \to \mathcal{S}' is an equivalence over \mathcal{C} with \mathcal{S}' fibred in sets over \mathcal{C}, then
\mathcal{S} is fibred in setoids over \mathcal{C}, and
for each U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) the map \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}_ U) \to \mathop{\mathrm{Ob}}\nolimits (\mathcal{S}'_ U) identifies the target as the set of isomorphism classes of the source.
If p : \mathcal{S} \to \mathcal{C} is a category fibred in setoids, then there exists a category fibred in sets p' : \mathcal{S}' \to \mathcal{C} and an equivalence \text{can} : \mathcal{S} \to \mathcal{S}' over \mathcal{C}.
Comments (0)