Lemma 4.27.14. Let $\mathcal{C}$ be a category and let $S$ be a right multiplicative system of morphisms of $\mathcal{C}$. Let $A, B : X \to Y$ be morphisms of $S^{-1}\mathcal{C}$ which are the equivalence classes of $(f : X' \to Y, s : X' \to X)$ and $(g : X' \to Y, s : X' \to X)$. The following are equivalent
$A = B$,
there exists a morphism $t : X'' \to X'$ in $S$ with $f \circ t = g \circ t$, and
there exists a morphism $a : X'' \to X'$ with $f \circ a = g \circ a$ and $s \circ a \in S$.
Comments (0)
There are also: