The Stacks project

Lemma 4.33.4. Let $\mathcal{C}$ be a category. Let $p : \mathcal{S} \to \mathcal{C}$ be a category over $\mathcal{C}$. Let $x \to y$ and $z \to y$ be morphisms of $\mathcal{S}$. Assume

  1. $x \to y$ is strongly cartesian,

  2. $p(x) \times _{p(y)} p(z)$ exists, and

  3. there exists a strongly cartesian morphism $a : w \to z$ in $\mathcal{S}$ with $p(w) = p(x) \times _{p(y)} p(z)$ and $p(a) = \text{pr}_2 : p(x) \times _{p(y)} p(z) \to p(z)$.

Then the fibre product $x \times _ y z$ exists and is isomorphic to $w$.

Proof. Since $x \to y$ is strongly cartesian there exists a unique morphism $b : w \to x$ such that $p(b) = \text{pr}_1$. To see that $w$ is the fibre product we compute

\begin{align*} & \mathop{Mor}\nolimits _\mathcal {S}(t, w) \\ & = \mathop{Mor}\nolimits _\mathcal {S}(t, z) \times _{\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(z))} \mathop{Mor}\nolimits _\mathcal {C}(p(t), p(w)) \\ & = \mathop{Mor}\nolimits _\mathcal {S}(t, z) \times _{\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(z))} (\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(x)) \times _{\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(y))} \mathop{Mor}\nolimits _\mathcal {C}(p(t), p(z))) \\ & = \mathop{Mor}\nolimits _\mathcal {S}(t, z) \times _{\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(y))} \mathop{Mor}\nolimits _\mathcal {C}(p(t), p(x)) \\ & = \mathop{Mor}\nolimits _\mathcal {S}(t, z) \times _{\mathop{Mor}\nolimits _\mathcal {S}(t, y)} \mathop{Mor}\nolimits _\mathcal {S}(t, y) \times _{\mathop{Mor}\nolimits _\mathcal {C}(p(t), p(y))} \mathop{Mor}\nolimits _\mathcal {C}(p(t), p(x)) \\ & = \mathop{Mor}\nolimits _\mathcal {S}(t, z) \times _{\mathop{Mor}\nolimits _\mathcal {S}(t, y)} \mathop{Mor}\nolimits _\mathcal {S}(t, x) \end{align*}

as desired. The first equality holds because $a : w \to z$ is strongly cartesian and the last equality holds because $x \to y$ is strongly cartesian. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06N4. Beware of the difference between the letter 'O' and the digit '0'.