The Stacks project

Remark 4.21.6. Note that a finite directed set $(I, \geq )$ always has a greatest object $i_\infty $. Hence any colimit of a system $(M_ i, f_{ii'})$ over such a set is trivial in the sense that the colimit equals $M_{i_\infty }$. In contrast, a colimit indexed by a finite filtered category need not be trivial. For instance, let $\mathcal{I}$ be the category with a single object $i$ and a single non-trivial morphism $e$ satisfying $e = e \circ e$. The colimit of a diagram $M : \mathcal{I} \to Sets$ is the image of the idempotent $M(e)$. This illustrates that something like the trick of passing to $\mathcal{I}\times \omega $ in the proof of Lemma 4.21.5 is essential.

Comments (0)

There are also:

  • 2 comment(s) on Section 4.21: Limits and colimits over preordered sets

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09P8. Beware of the difference between the letter 'O' and the digit '0'.